Solveeit Logo

Question

Mathematics Question on Limits

If limx0αex+βex+γsinxxsin2x=23\lim_{{x \to 0}} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}, where α,β,γR\alpha, \beta, \gamma \in \mathbb{R} then which of the following is NOT correct?

A

α2+β2+γ2=6\alpha^2 + \beta^2 + \gamma^2 = 6

B

αβ+βγ+γα+1=0\alpha \beta + \beta \gamma + \gamma \alpha + 1 = 0

C

αβ2+βγ2+γα2+3=0\alpha \beta^2 + \beta \gamma^2 + \gamma \alpha^2 + 3 = 0

D

α2β2+γ2=4\alpha^2 - \beta^2 + \gamma^2 = 4

Answer

αβ2+βγ2+γα2+3=0\alpha \beta^2 + \beta \gamma^2 + \gamma \alpha^2 + 3 = 0

Explanation

Solution

limx0αex+βex+γsinxxsin2x=23\lim_{{x \to 0}} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}
α+β=0⇒ α + β = 0 (to make indeterminant form) …(i)
Now,
limx0αex+βex+γsinxxsin2x=23\lim_{{x \to 0}} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}
(Using L-H Rule)
αβ+γ=0⇒ α – β + γ = 0 (to make indeterminant form) …(ii)
Now,
limx0αex+βex+γsinx6x=23\lim_{{x \to 0}} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{6x} = \frac{2}{3}
(Using L-H Rule)
⇒$$\frac{\alpha - \beta - \gamma}{6} = \frac{2}{3}
⇒$$α – β – γ = 4 …(iii)
γ=2γ = –2
and eq(i) + eq(ii)
2α=γ2α = –γ
On solving,
α=1 and β=1⇒ α = 1\ \text{and}\ β = –1
and αβ2+βγ2+γα2+3\alpha \beta^2 + \beta \gamma^2 + \gamma \alpha^2 + 3
=142+3= 1 – 4 – 2 + 3
=2= –2
So, the correct option is (C): αβ2+βγ2+γα2+3=0\alpha \beta^2 + \beta \gamma^2 + \gamma \alpha^2 + 3 = 0