Question
Mathematics Question on Limits
If limx→0xsin2xαex+βe−x+γsinx=32, where α,β,γ∈R then which of the following is NOT correct?
A
α2+β2+γ2=6
B
αβ+βγ+γα+1=0
C
αβ2+βγ2+γα2+3=0
D
α2−β2+γ2=4
Answer
αβ2+βγ2+γα2+3=0
Explanation
Solution
limx→0xsin2xαex+βe−x+γsinx=32
⇒α+β=0 (to make indeterminant form) …(i)
Now,
limx→0xsin2xαex+βe−x+γsinx=32
(Using L-H Rule)
⇒α–β+γ=0 (to make indeterminant form) …(ii)
Now,
limx→06xαex+βe−x+γsinx=32
(Using L-H Rule)
⇒$$\frac{\alpha - \beta - \gamma}{6} = \frac{2}{3}
⇒$$α – β – γ = 4 …(iii)
⇒ γ=–2
and eq(i) + eq(ii)
2α=–γ
On solving,
⇒α=1 and β=–1
and αβ2+βγ2+γα2+3
=1–4–2+3
=–2
So, the correct option is (C): αβ2+βγ2+γα2+3=0