Solveeit Logo

Question

Mathematics Question on Limits

If limx0(an)nxtanxsinnxx2=0,lim_{x \to 0 } \frac{ \\{(a - n) nx - tan \, x \\} sin \, nx }{x^2} = 0, where n is non-zero real number, then a is equal to

A

0

B

n+1n\frac{n + 1}{n}

C

n

D

n+1n n + \frac{ 1}{n}

Answer

n+1n n + \frac{ 1}{n}

Explanation

Solution

Given, limx0(an)nxtanxsinnxx2=0lim_{x \to 0 } \frac{ \\{(a - n) nx - tan \, x \\} sin \, nx }{x^2} = 0
\Rightarrow lim_{ x \to 0 } \Bigg \\{ (a - n) n - \frac{ tan \, x}{x} \Bigg \\} \frac{ sin \, n \, x}{ n \, x} \times n = 0
\Rightarrow \hspace12mm { (a - n) n - 1 } n = 0
\Rightarrow \hspace12mm (a - n ) n = 1 a=n+1n \Rightarrow a = n + \frac{1}{n}.