Solveeit Logo

Question

Mathematics Question on Limits

If limx03+αsinx+βcosx+log(1x)3tan2x=13,\lim_{x \to 0} \frac{3 + \alpha \sin x + \beta \cos x + \log(1 - x)}{3 \tan^2 x} = \frac{1}{3}, then 2αβ2\alpha - \beta is equal to:

A

2

B

7

C

5

D

1

Answer

5

Explanation

Solution

Given:
limx03+αsinx+βcosx+loge(1x)3tan2x=13.\lim_{x \to 0} \frac{3 + \alpha \sin x + \beta \cos x + \log_e(1 - x)}{3 \tan^2 x} = \frac{1}{3}.

Expanding the trigonometric and logarithmic functions around x=0x = 0 using Taylor series:
sinxx,cosx1x22,loge(1x)xx22.\sin x \approx x, \quad \cos x \approx 1 - \frac{x^2}{2}, \quad \log_e(1 - x) \approx -x - \frac{x^2}{2}.

Substituting these approximations:
limx03+αx+β(1x22)xx223(x33+)2.\lim_{x \to 0} \frac{3 + \alpha x + \beta \left(1 - \frac{x^2}{2}\right) - x - \frac{x^2}{2}}{3 \left(\frac{x^3}{3} + \ldots\right)^2}.

Simplifying the numerator:
3+β+(α1)x+(β212)x2.3 + \beta + (\alpha - 1)x + \left(-\frac{\beta}{2} - \frac{1}{2}\right)x^2.

For the limit to be finite and equal to 13\frac{1}{3}, the terms involving xx and higher powers of xx must vanish. This gives:
α1=0    α=1,\alpha - 1 = 0 \implies \alpha = 1,
and:
3+β=0    β=3.3 + \beta = 0 \implies \beta = -3.

Substituting these values:
2αβ=2×1(3)=2+3=5.2\alpha - \beta = 2 \times 1 - (-3) = 2 + 3 = 5.

Thus, the correct answer is: 5