Solveeit Logo

Question

Question: If \[{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]exists, find the value of \[...

If limx0a+bsinxcosx+cexx3{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}exists, find the value of a,b,ca,b,c Also find the limit.

Explanation

Solution

Apply L-Hospital’s rule, it tells us that if we have an indeterminate form i.e 00\dfrac{0}{0} or \dfrac{\infty}{\infty} all we have to do is to differentiate the numerator and the denominator and then take the limits. L hospitals are applicable only if the value of f and g are 0, where f and g are defined as functions.
In this question we also have to apply the Maclaurin series theorem to substitute the value of sinx,cosx\sin x,\cos x and ex{e^x} where Maclaurin series is a power series that is used to calculate an approximation of a function f(0) for input values close to zero, only if one knows the successive derivative of the function at zero.
Maclaurin series is a special case series of Taylor’s series, Maclaurin series can be written as
n=0f(n)(0)xnn!=f(0)+f(0)x+f(0)2!x2+........+f(k)(0)k!xk+....\sum\limits_{n = 0}^\infty {{f^{\left( n \right)}}\left( 0 \right)\dfrac{{{x^n}}}{{n!}} = f\left( 0 \right) + f'\left( 0 \right)x} + \dfrac{{f''\left( 0 \right)}}{{2!}}{x^2} + ........ + \dfrac{{{f^{\left( k \right)}}\left( 0 \right)}}{{k!}}{x^k} + ....

Complete step by step answer:
We have to find the value of a, b, c from the limit function limx0a+bsinxcosx+cexx3{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}
Hence we can write the limit as:
l=limx0a+bsinxcosx+cexx3l = {\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}
Now using Maclaurin series, we know the value of sinx\sin x, cosx\cos xand ex{e^x} at the limit x0x \to 0
sinx=xx33!+x55!x77!+.......\sin x = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + .......
cosx=1x22!+x44!x66!+.......\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + .......
ex=1+x1!+x22!+x33!+x44!+..........{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ..........
Now by substituting these values in the limit function, we can write

l=limx0(a+bsinxcosx+cexx3) =limx0[a+b(xx33!+x55!x77!+.......)(1x22!+x44!x66!+.......)+c(1+x1!+x22!+x33!+x44!+..........)x3]  l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}} \right) \\\ = \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{a + b\left( {x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + .......} \right) - \left( {1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + .......} \right) + c\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ..........} \right)}}{{{x^3}}}} \right] \\\

Now from the limit function find the sum of constant terms; hence we can write

a1+c=0 a+c=1(i)  a - 1 + c = 0 \\\ a + c = 1 - - - (i) \\\

Now find the sum of the coefficient of xx
b+c=0(ii)b + c = 0 - - - (ii)
And for the coefficient of x2{x^2}

12+c2=0 c=1  \dfrac{1}{2} + \dfrac{c}{2} = 0 \\\ c = - 1 \\\

Hence substitute the value of c=1c = - 1 in equations (i) and (ii), we get the values

a=2 b=1 c=1  a = 2 \\\ b = 1 \\\ c = - 1 \\\

Now let’s find the value of limit using L-Hospital’s rule, differentiate numerator and denominator

limx0a+bsinxcosx+cexx3=a1+c=0 limx0bcosx+sinx+cex3x2=b+c=0 limx0bsinx+cosx+cex6x=1+c=0 limx0bcosxsinx+cex6=b+c6  {\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}} = a - 1 + c = 0 \\\ {\lim _{x \to 0}}\dfrac{{b\cos x + \sin x + c{e^x}}}{{3{x^2}}} = b + c = 0 \\\ {\lim _{x \to 0}}\dfrac{{ - b\sin x + \cos x + c{e^x}}}{{6x}} = 1 + c = 0 \\\ {\lim _{x \to 0}}\dfrac{{ - b\cos x - \sin x + c{e^x}}}{6} = \dfrac{{ - b + c}}{6} \\\

Hence by substituting the value of b=1b = 1 and c=1c = - 1 we get the value of the limit
b+c6=1+(1)6=26=13\dfrac{{ - b + c}}{6} = \dfrac{{ - 1 + \left( { - 1} \right)}}{6} = \dfrac{{ - 2}}{6} = - \dfrac{1}{3} is the value of the limit.

Note: If the given function is in the indeterminate form of 00\dfrac{0}{0} then we apply the L-Hospital’s rule where we differentiate the numerator and the denominator of the function until we get a non-zero solution.