Solveeit Logo

Question

Mathematics Question on Limits

If limn\lim_{n\rightarrow \infty}(n2n1\sqrt{n^2-n-1} + nα+β)=0 then 8(α + β) is equal to

A

4

B

-8

C

-4

D

8

Answer

-4

Explanation

Solution

limn\lim_{n\rightarrow \infty}(n2n1n^2−n−1+nα+β)=0
=limn\lim_{n\rightarrow \infty} n[11n1n2\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}+α+βn\frac{\beta}{n}]=0
∴ α = –1
Now,
limn\lim_{n\rightarrow \infty} n[{1−(1n1n2\frac{1}{n}-\frac{1}{n^2})}12^{\frac{1}{2}}+βn\frac{\beta }{n}−1]=0
limn\lim_{n\rightarrow \infty} n(1−12\frac{1}{2}(1n+1n2\frac{1}{n}+\frac{1}{n^2})+…)+βn\frac{\beta }{n}−1=0
⇒ β–12\frac{1}{2}=0
∴β=12\frac{1}{2}
Now,
8(α+β)=8(-12\frac{1}{2})=-4