Question
Mathematics Question on Limits
If limn→∞(n2−n−1 + nα+β)=0 then 8(α + β) is equal to
A
4
B
-8
C
-4
D
8
Answer
-4
Explanation
Solution
limn→∞(n2−n−1+nα+β)=0
=limn→∞ n[1−n1−n21+α+nβ]=0
∴ α = –1
Now,
limn→∞ n[{1−(n1−n21)}21+nβ−1]=0
limn→∞ n(1−21(n1+n21)+…)+nβ−1=0
⇒ β–21=0
∴β=21
Now,
8(α+β)=8(-21)=-4