Question
Mathematics Question on limits and derivatives
If limn→∞ nk+1(n+1)k−1[(nk+1)+(nk+2)+....+(nk+n)]=33.limn→∞nk+11.[1k+2k+3k+....+nk]
then the integral value of k is equal to _______.
Answer
\lim_{n\rightarrow \infty}$$(\frac{n+1}{n})^{k-1} \frac{1}{n}\sum_{r=1}^{n}(k+\frac{r}{n}) =33
⋅\lim_{n\rightarrow \infty}$$\frac{1}{n}\sum_{k=1}^{n}(\frac{r}{n})^k
⇒∫01(k+x)dx=33∫01xkdx
⇒22k+1=k+133
⇒K=5