Solveeit Logo

Question

Mathematics Question on limits and derivatives

If limn\lim_{n\rightarrow \infty} (n+1)k1nk+1[(nk+1)+(nk+2)+....+(nk+n)]=33.limn1nk+1.[1k+2k+3k+....+nk]\frac{(n+1)^{k-1}}{n^{k+1}}[(nk+1)+(nk+2)+....+(nk+n)]=33.\lim_{n\rightarrow \infty}\frac{1}{n^{k+1}}.[1^k+2^k+3^k+....+n^k]
then the integral value of k is equal to _______.

Answer

\lim_{n\rightarrow \infty}$$(\frac{n+1}{n})^{k-1} \frac{1}{n}\sum_{r=1}^{n}(k+\frac{r}{n}) =33

\lim_{n\rightarrow \infty}$$\frac{1}{n}\sum_{k=1}^{n}(\frac{r}{n})^k
01(k+x)dx=3301xkdx\Rightarrow \int_{0}^{1}(k+x)dx=33\int_{0}^{1}x^kdx
2k+12=33k+1\Rightarrow \, \frac{2k+1}{2}=\frac{33}{k+1}
K=5\Rightarrow K=5