Solveeit Logo

Question

Question: If $\left(\frac{1-i}{1+i}\right)^{100} = c + id$, then what are the values of c and d?...

If (1i1+i)100=c+id\left(\frac{1-i}{1+i}\right)^{100} = c + id, then what are the values of c and d?

Answer

c=1, d=0

Explanation

Solution

To find the values of cc and dd, we first need to simplify the expression (1i1+i)100\left(\frac{1-i}{1+i}\right)^{100}.

Step 1: Simplify the base of the expression. We will simplify the fraction 1i1+i\frac{1-i}{1+i} by multiplying the numerator and denominator by the conjugate of the denominator. The conjugate of 1+i1+i is 1i1-i.

1i1+i=1i1+i×1i1i\frac{1-i}{1+i} = \frac{1-i}{1+i} \times \frac{1-i}{1-i}

Using the algebraic identity (ab)2=a22ab+b2(a-b)^2 = a^2 - 2ab + b^2 for the numerator and (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2 for the denominator:

=(1i)212i2= \frac{(1-i)^2}{1^2 - i^2}

Recall that i2=1i^2 = -1. Substitute this value:

=122(1)(i)+i21(1)= \frac{1^2 - 2(1)(i) + i^2}{1 - (-1)} =12i11+1= \frac{1 - 2i - 1}{1 + 1} =2i2= \frac{-2i}{2} =i= -i

Step 2: Substitute the simplified base back into the original expression. Now the expression becomes:

(i)100(-i)^{100}

Step 3: Evaluate the power of the complex number. We can write (i)100(-i)^{100} as:

(i)100=(1)100×(i)100(-i)^{100} = (-1)^{100} \times (i)^{100}

Since 100 is an even number, (1)100=1(-1)^{100} = 1. So, the expression simplifies to:

=1×i100= 1 \times i^{100} =i100= i^{100}

To evaluate i100i^{100}, we use the cyclic property of powers of ii: i1=ii^1 = i i2=1i^2 = -1 i3=ii^3 = -i i4=1i^4 = 1

The powers of ii repeat every 4 terms. To find i100i^{100}, we divide the exponent 100 by 4: 100÷4=25100 \div 4 = 25 with a remainder of 0. When the remainder is 0, in=i4=1i^n = i^4 = 1. Therefore, i100=1i^{100} = 1.

Step 4: Equate the result to c+idc+id. We found that (1i1+i)100=1\left(\frac{1-i}{1+i}\right)^{100} = 1. Given that (1i1+i)100=c+id\left(\frac{1-i}{1+i}\right)^{100} = c + id. So, we have:

c+id=1c + id = 1

We can write 11 in the form a+bia+bi as 1+0i1 + 0i. Comparing the real and imaginary parts: c=1c = 1 d=0d = 0

The values of cc and dd are 11 and 00 respectively.