Solveeit Logo

Question

Question: If \(\left| z_{1} \right| = \left| z_{2} \right|\)and \(ampz_{1} + ampz_{2} = 0\), then...

If z1=z2\left| z_{1} \right| = \left| z_{2} \right|and ampz1+ampz2=0ampz_{1} + ampz_{2} = 0, then

A

z1=z2z_{1} = z_{2}

B

zˉ1=z2{\bar{z}}_{1} = z_{2}

C

z1+z2=0z_{1} + z_{2} = 0

D

zˉ1=zˉ2{\bar{z}}_{1} = {\bar{z}}_{2}

Answer

zˉ1=z2{\bar{z}}_{1} = z_{2}

Explanation

Solution

Sol. Let z1=OP,z2=OQ\left| z_{1} \right| = OP,\left| z_{2} \right| = OQ

Since amp (z1)(z_{1}) = θ\thetaamp(z2)amp(z_{2}) = –θ\theta

\because QQis point image of PP

\therefore z1=z2\overline{z_{1}} = z_{2}

Trick : argz+argzˉ=0,zˉ1a ⥂ rgz + a ⥂ rg\bar{z} = 0,\therefore{\bar{z}}_{1} must be equal to z2z_{2}.