Solveeit Logo

Question

Question: If \(\left| z^{2} - 1 \right| = |z|^{2} + 1,\) then z lies on...

If z21=z2+1,\left| z^{2} - 1 \right| = |z|^{2} + 1, then z lies on

A

An ellipse

B

The imaginary axis

C

A circle

D

The real axis

Answer

The imaginary axis

Explanation

Solution

Sol. z21=z2+1|z^{2} - 1| = |z|^{2} + 1

z12z+12=(zzˉ+1)2|z - 1|^{2}|z + 1|^{2} = (z\bar{z} + 1)^{2}

(z1)(zˉ1)(z+1)(zˉ+1)=(zzˉ+1)2(z - 1)(\bar{z} - 1)(z + 1)(\bar{z} + 1) = (z\bar{z} + 1)^{2}z+zˉ=z + \bar{z} =0

z lies on imaginary axis.