Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If Z4z=2\left|Z-\frac{4}{z}\right|=2, then the maximum value of Z\left|Z\right| is equal to

A

3+1\sqrt{3}+1

B

5+1\sqrt{5}+1

C

22

D

2+22+\sqrt{2}

Answer

5+1\sqrt{5}+1

Explanation

Solution

Z=(Z4Z)+4ZZ=Z4Z+4Z\left|Z\right|=\left|\left(Z-\frac{4}{Z}\right)+\frac{4}{Z}\right| \Rightarrow \left|Z\right|=\left|Z-\frac{4}{Z}+\frac{4}{Z}\right| ZZ4Z+4ZZ2+4Z\Rightarrow \left|Z\right|\le \left|Z-\frac{4}{Z}\right|+\frac{4}{\left|Z\right|} \Rightarrow \left|Z\right|\le2+\frac{4}{\left|Z\right|} Z22Z40\Rightarrow \left|Z\right|^{2}-2\left|Z\right|-4\le0 (Z(5+1))(Z(15))015Z5+1\left(\left|Z\right|-\left(\sqrt{5}+1\right)\right)\left(\left|Z\right|-\left(1-\sqrt{5}\right)\right)\le0 \Rightarrow 1-\sqrt{5} \le\left|Z\right|\le\sqrt{5}+1