Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If z32=2\left|z-\frac{3}{2}\right|=2 , then the greatest value of z\left|z\right| is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

Given, z3z=2\left|z-\frac{3}{z}\right|=2
z=(z3z)+3z\because |z|=\left|\left(z-\frac{3}{z}\right)+\frac{3}{z}\right|
zz3z+3z[a+ba+b]\Rightarrow |z| \leq\left|z-\frac{3}{z}\right|+\frac{3}{|z|}[\because|a+b| \leq|a|+|b|]
z2+3z\Rightarrow |z| \leq 2+\frac{3}{|z|}
z22z+3\Rightarrow |z|^{2} \leq 2|z|+3
z22z30\Rightarrow |z|^{2}-2|z|-3 \leq 0
(z3)(z+1)0\Rightarrow(|z|-3)(|z|+1) \leq 0
1z3\Rightarrow -1 \leq|z| \leq 3
Hence, the greatest value of z|z| is 3 .