Solveeit Logo

Question

Question: If \(\left| z-\dfrac{4}{z} \right|=2\), then the maximum value of \(\left| z \right|\) is equal to ...

If z4z=2\left| z-\dfrac{4}{z} \right|=2, then the maximum value of z\left| z \right| is equal to
(a) 1+31+\sqrt{3}
(b) 1+51+\sqrt{5}
(c) 151-\sqrt{5}
(d) 51\sqrt{5}-1

Explanation

Solution

Hint: Use the inequalities of two complex numbers. It is given as z1z2z1z2\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right| \right| and z1+z2z1+z2\left| {{z}_{1}}+{{z}_{2}} \right|\le \left| \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \right|. Use any one of the inequality to get inequality in z\left| z \right|. Now, get the possible range of values of z\left| z \right|. And hence get maximum value of z\left| z \right|.

Complete step-by-step answer:

We know the relation between the two complex numbers z1{{z}_{1}} and z2{{z}_{2}}can be given as
z1z2z1z2\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right| \right| …………………… (i)
Let the complex numbers in the above equation be z and 4z\dfrac{4}{z}, so that we can use the given relationship in the problem. Hence, we get
z4zz4z\left| z-\dfrac{4}{z} \right|\ge \left| \left| z \right|-\dfrac{4}{\left| z \right|} \right|…………… (ii)
Now, it is given that value of z4z\left| z-\dfrac{4}{z} \right| is 2 from the problem;
z4z=2\left| z-\dfrac{4}{z} \right|=2 …………… (iii)
Now, we can put value of z4z\left| z-\dfrac{4}{z} \right|from equation (iii) in the equation (ii) and hence, we get
2z4z2\ge \left| \left| z \right|-\dfrac{4}{\left| z \right|} \right|
Let us suppose z=r\left| z \right|='r' , hence, we get:
r4r2\left| r-\dfrac{4}{r} \right|\le 2…………………….. (iv)
Now, we know the property of inequalities in modular function, can be given as
If xa\left| x \right|\le a, then
axa-a\le x\le a ………….. (v)
Hence, we can simplify equation (iv) as,
2r4r2-2\le r-\dfrac{4}{r}\le 2
Now, we can solve left and right inequalities to get the range of value of ‘r’.
As z=r\left| z \right|=ris a positive value; then we can multiply the term ‘r’ to the other side of the inequalities.
Hence, the left inequality gives
2r24r 2rr24 r2+2r40...........(vi) \begin{aligned} & -2\le \dfrac{{{r}^{2}}-4}{r} \\\ & -2r\le {{r}^{2}}-4 \\\ & \Rightarrow {{r}^{2}}+2r-4\ge 0...........(vi) \\\ \end{aligned}
Now, we can find the corresponding roots of r2+2r4=0{{r}^{2}}+2r-4=0 with the help of quadratic formula given as
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} for ax2+bx+c=0a{{x}^{2}}+bx+c=0
Hence, roots of r2+2r4=0{{r}^{2}}+2r-4=0 is given as
r=2±4+162=2±202r=\dfrac{-2\pm \sqrt{4+16}}{2}=\dfrac{-2\pm \sqrt{20}}{2}
r=2±252=1±5r=\dfrac{-2\pm 2\sqrt{5}}{2}=-1\pm \sqrt{5} …………………… (vii)
Hence, from equation (vi) and (vii), we get
(r(1+5))(r(15))0\left( r-\left( -1+\sqrt{5} \right) \right)\left( r-\left( -1-\sqrt{5} \right) \right)\ge 0
Hence, r15r\le -1-\sqrt{5}and r1+5r\ge -1+\sqrt{5}
r(,15)(51,)\Rightarrow r\in \left( -\infty ,-1-\sqrt{5} \right)\bigcup \left( \sqrt{5}-1,\infty \right) …………… (viii)
Again considering the right inequality, we get
r4r2 r24r2 r242r r22r40.............(ix) \begin{aligned} & r-\dfrac{4}{r}\le 2 \\\ & \dfrac{{{r}^{2}}-4}{r}\le 2 \\\ & {{r}^{2}}-4\le 2r \\\ & \Rightarrow {{r}^{2}}-2r-4\le 0.............(ix) \\\ \end{aligned}
Now, roots of the equation r22r4=0{{r}^{2}}-2r-4=0 can be given as
r=2±4+162 r=2±202=2±252 r=1±5 \begin{aligned} & r=\dfrac{2\pm \sqrt{4+16}}{2} \\\ & r=\dfrac{2\pm \sqrt{20}}{2}=\dfrac{2\pm 2\sqrt{5}}{2} \\\ & r=1\pm \sqrt{5} \\\ \end{aligned}
Hence, equation (ix) can be written as
(r(1+5))(r(15))0\left( r-\left( 1+\sqrt{5} \right) \right)\left( r-\left( 1-\sqrt{5} \right) \right)\le 0
Hence,
15r1+51-\sqrt{5}\le r\le 1+\sqrt{5} …………… (x)
Now, taking intersection of inequalities of equation (viii) and (x), we get
51r5+1\sqrt{5}-1\le r\le \sqrt{5}+1
Hence, the greatest value of r i.e. z\left| z \right| is 5+1\sqrt{5}+1
So, option (b) is the correct answer.

Note: One may try to put z = x + iy in the given problem but that would be a very complex approach for the problem and will take a lot of time.
Inequalities z1z2z1z2\left| {{z}_{1}}-{{z}_{2}} \right|\ge \left| \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right| \right| and z1+z2z1+z2\left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\ge \left| \left| {{z}_{1}}+{{z}_{2}} \right| \right| will always be a key point for all these types of the given problems. One can solve the inequality r4r2\left| r-\dfrac{4}{r} \right|\ge 2 by squaring both the sides and simplify it further.