Solveeit Logo

Question

Question: If \(\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2,\left| {{z}_{3}} \right|=3\) and \(\left|...

If z1=1,z2=2,z3=3\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2,\left| {{z}_{3}} \right|=3 and 9z1z2+4z1z3+z2z3=12\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12 then the value of z1+z2+z3\left| {{z}_{1}}+{{z}_{2}}+{{z}_{3}} \right| is equal to ?
a)2
b)3
c)4
d)6

Explanation

Solution

Hint: We will use two formula to solve this question zz=z2z\overline{z}={{\left| z \right|}^{2}} also, z1+z2+z3=z1+z2+z3\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}. First we will solve the given relation 9z1z2+4z1z3+z2z3=12\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12, to get the value of z1+z2+z3\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right| and then from this we will find the value of z1+z2+z3\left| {{z}_{1}}+{{z}_{2}}+{{z}_{3}} \right|, using the second relation.

Complete step-by-step answer:

It is given in the question that z1=1,z2=2,z3=3\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2,\left| {{z}_{3}} \right|=3 also a relation is given - 9z1z2+4z1z3+z2z3=12\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12 and then we have to find the value of z1+z2+z3\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|. Now, we know that for any complex number z, zz=z2z\overline{z}={{\left| z \right|}^{2}} thus, from the formula we get, z1z1=12=1{{z}_{1}}\overline{{{z}_{1}}}={{\left| 1 \right|}^{2}}=1 and z2z2=22=4{{z}_{2}}\overline{{{z}_{2}}}={{\left| 2 \right|}^{2}}=4 and z3z3=32=9{{z}_{3}}\overline{{{z}_{3}}}={{\left| 3 \right|}^{2}}=9. Now, we will replace the 9 as z3z3{{z}_{3}}\overline{{{z}_{3}}} , 4 as z2z2{{z}_{2}}\overline{{{z}_{2}}} and 1 as z1z1{{z}_{1}}\overline{{{z}_{1}}} in the given relation 9z1z2+4z1z3+z2z3=12\left| 9{{z}_{1}}{{z}_{2}}+4{{z}_{1}}{{z}_{3}}+{{z}_{2}}{{z}_{3}} \right|=12,
We get - z3z3z1z2+z1z3z2z2+z2z3z1z1=12\left| {{z}_{3}}\overline{{{z}_{3}}}{{z}_{1}}{{z}_{2}}+{{z}_{1}}{{z}_{3}}{{z}_{2}}\overline{{{z}_{2}}}+{{z}_{2}}{{z}_{3}}{{z}_{1}}\overline{{{z}_{1}}} \right|=12 taking z1z2z3{{z}_{1}}\centerdot {{z}_{2}}\centerdot {{z}_{3}} common in LHS we get - z1z2z3z1+z2+z3=12\left| {{z}_{1}}\centerdot {{z}_{2}}\centerdot {{z}_{3}} \right|\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12, Solving further, we get z1z2z3z1+z2+z3=12\left| {{z}_{1}} \right|\centerdot \left| {{z}_{2}} \right|\centerdot \left| {{z}_{3}} \right|\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12 we have z1=1,z2=2{{z}_{1}}=1,{{z}_{2}}=2 and z3=3{{z}_{3}}=3, on putting these values in the above equation we get 123z1+z2+z3=121\cdot 2\cdot 3\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12, that is, 6z1+z2+z3=126\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=12 or z1+z2+z3=126=2\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=\dfrac{12}{6}=2.
Now, we know that z1+z2+z3=z1+z2+z3\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}}, therefore we can say that z1+z2+z3=z1+z2+z3=2\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}} \right|=\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|=2 or we get the value of expression z1+z2+z3=2\left| \overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} \right|=2 thus option a) is the correct answer.

Note: Usually student get stuck in the last step because most of the student don’t know that the value z1+z2+z3=z1+z2+z3\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}=\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}} holds true. And they get stuck just before a few steps to finish their answer. Thus it is recommended to learn all the properties of complex numbers to solve this type of problem easily and completely.