Solveeit Logo

Question

Question: If \(\left[ x \right]\) donates the integral part of x for the real value of x, then the value of ...

If [x]\left[ x \right] donates the integral part of x for the real value of x, then the value of
[14]+[14+1200]+[14+1100]+[14+3200]+......................+[14+199200]\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{100} \right]+\left[ \dfrac{1}{4}+\dfrac{3}{200} \right]+......................+\left[ \dfrac{1}{4}+\dfrac{199}{200} \right] is 10a10a. Find a.

Explanation

Solution

Hint: [x]\left[ x \right] donates the integral part x for real values of x mean that if x=n+fx=n+f where f is the fractional part and n is the integral part.
[x]=n\left[ x \right]=n
For example [1.5]=1\left[ 1.5 \right]=1
For 0x<1 [x]=00\le x<1\text{ }\left[ x \right]=0
.And 1x<2 [x]=1 ............ and so on ......1\le x<2\text{ }\left[ x \right]=1\text{ }............\text{ and so on }.......

Complete step-by-step answer:
[14]+[14+1200].................[14+199200]=10a\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right].................\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]=10anow we have,
[14+34]=1[14+150200]=1\left[ \dfrac{1}{4}+\dfrac{3}{4} \right]=1\Rightarrow \left[ \dfrac{1}{4}+\dfrac{150}{200} \right]=1
Similarly, [14+151200]=[1.005]=1\left[ \dfrac{1}{4}+\dfrac{151}{200} \right]=\left[ 1.005 \right]=1
So we can write nth term of the series in the form [14+m200] 0m199 mεN\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ 0}\le \text{m}\le 199\text{ m}\varepsilon \text{N}
Here, when m<150m<150
[14+m200] = 0\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ = 0} because 14+m200<1\dfrac{1}{4}+\dfrac{m}{200}<1
When m>150m>150
[14+m200] = 1\left[ \dfrac{1}{4}+\dfrac{m}{200} \right]\text{ = 1} as 114+M200<21\le \dfrac{1}{4}+\dfrac{M}{200}<2
So [14]+[14+1200]+..............[14+150200]+[14+151200]+..........+[14+199200]\left[ \dfrac{1}{4} \right]+\left[ \dfrac{1}{4}+\dfrac{1}{200} \right]+..............\left[ \dfrac{1}{4}+\dfrac{150}{200} \right]+\left[ \dfrac{1}{4}+\dfrac{151}{200} \right]+..........+\left[ \dfrac{1}{4}+\dfrac{199}{200} \right]\Rightarrow
=0+0+0.............+1+1+........1=0+0+0.............+1+1+........1
=50=50 as then will be 5050term form [14+150200]\left[ \dfrac{1}{4}+\dfrac{150}{200} \right] to [14+191200]\left[ \dfrac{1}{4}+\dfrac{191}{200} \right]
But it is given that the sum of above term is 10a10a
10a=5010a=50
a=5\Rightarrow a=5

Note: Thus one certain properties of [x]\left[ x \right]where it donates the integral part of x
[x1]+[x2][x1+x2]\left[ {{x}_{1}} \right]+\left[ {{x}_{2}} \right]\ne \left[ {{x}_{1}}+{{x}_{2}} \right]
For example: x1=1.5{{x}_{1}}=1.5
x2=2.5{{x}_{2}}=2.5
[x1]=[1.5]=1\left[ {{x}_{1}} \right]=\left[ 1.5 \right]=1
[x2]=[2.5]=2\left[ {{x}_{2}} \right]=\left[ 2.5 \right]=2
[x1+x2]=3\left[ {{x}_{1}}+{{x}_{2}} \right]=3
But [x1+x2]=[1.5+2.5]=4\left[ {{x}_{1}}+{{x}_{2}} \right]=\left[ 1.5+2.5 \right]=4
Hence it does not follow f(a)+f(6)=f(a+6)f(a)+f(6)=f(a+6)
\therefore it is not a function.