Question
Question: If \(\left| x \right|<1\), then the sum of the series \(1+2x+3{{x}^{2}}+4{{x}^{3}}+.....\infty \) wi...
If ∣x∣<1, then the sum of the series 1+2x+3x2+4x3+.....∞ will be
A. 1−x1
B. 1+x1
C. −1+x21
D. (1−x)21
Solution
We use (1−x)n=1−nx+2!n(n−1)x2−......+(−1)rr!n(n−1)....(n−r+1)xr+....+∞, the infinite binomial formula. We replace the value of n=−2. We simplify the coefficients and get the simplest forms. We convert the indices to get the required solution.
Complete answer:
We know that the binomial theorem of (1+x)n,∣x∣<1,n∈R gives
(1+x)n=1+nx+2!n(n−1)x2+......+r!n(n−1)....(n−r+1)xr+....+∞.
Now when the value of n is a negative real number we get
(1+x)n=1+nx+2!n(n−1)x2+......+r!n(n−1)....(n−r+1)xr+....+∞
We first replace the value of x with −x to get
(1−x)n=1−nx+2!n(n−1)x2−......+(−1)rr!n(n−1)....(n−r+1)xr+....+∞.
We now put the value for n=−2 to get
(1−x)−2=1−(−2)x+2!(−2)(−2−1)x2−3!(−2)(−2−1)(−2−2)x3+.......∞.
We now simplify to get