Solveeit Logo

Question

Question: If \( {\left( {x + iy} \right)^5} = p + iq \) , then prove that \( {\left( {y + ix} \right)^5} = q +...

If (x+iy)5=p+iq{\left( {x + iy} \right)^5} = p + iq , then prove that (y+ix)5=q+ip.{\left( {y + ix} \right)^5} = q + ip.

Explanation

Solution

Hint : The complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if aa and bb are real, then) the then the complex conjugate of (a+bi)\left( {a + bi} \right) is equal to (abi)\left( {a - bi} \right) .

Complete step-by-step answer :
Given equation in the question is,
\Rightarrow (x+iy)5=p+iq{\left( {x + iy} \right)^5} = p + iq
We can write it as,
1(x+iy)5=1(p+iq) 1(x+iy)5=piq (xiy)5=piq   \Rightarrow \dfrac{1}{{{{\left( {x + iy} \right)}^5}}} = \dfrac{1}{{(p + iq)}} \\\ \Rightarrow \dfrac{1}{{{{(x + iy)}^5}}} = p - iq \\\ \Rightarrow {\left( {x - iy} \right)^5} = p - iq \;
Multiply by i5{i^5} on both the sides,
i5(xiy)5=pi5qi6 (xii2y)5=pi+q (y+ix)5=pi+q.   \Rightarrow {i^5}{(x - iy)^5} = p{i^5} - q{i^6} \\\ \Rightarrow {(x{i^{}} - {i^2}y)^5} = pi + q \\\ \Rightarrow {(y + ix)^5} = pi + q. \;
Hence proved.

Note : \Rightarrow Each of two complex numbers having their real parts identical and their imaginary parts of equal magnitude but opposite sign.
\Rightarrow Conjugate of the conjugate of a complex number ZZ is the complex number itself.
\Rightarrow Conjugate of the sum of two complex numbers z1,z2{z_1},{z_2} is the sum of their conjugates.
z1+z2=zˉ1+zˉ2.\overline {z_1 + z_2} = \bar z_1 + \bar z_2.