Solveeit Logo

Question

Physics Question on Motion in a plane

If A+B=AB\left|\vec{A}+\vec{B}\right|=\left|\vec{A}-\vec{B}\right|, then the angle between A\vec{A} and B\vec{B} will be

A

30?30^?

B

45?45^?

C

60?60^?

D

90?90^?

Answer

90?90^?

Explanation

Solution

Let θ\theta be the angle between the vectors A\vec{A} and B\vec{B}. Then A+B=A2+B2+2ABcosθ\left|\vec{A}+\vec{B}\right|=\sqrt{A^{2}+B^{2}+2AB\,cos\,\theta} AB=A2+B22ABcosθ\left|\vec{A}-\vec{B}\right|=\sqrt{A^{2}+B^{2}-2AB\,cos\,\theta} According to given problem A+B=AB\left|\vec{A}+\vec{B}\right|=\left|\vec{A}-\vec{B}\right| A2+B2+2ABcosθ\therefore\sqrt{A^{2}+B^{2}+2AB\,cos\,\theta} =A2+B22ABcosθ=\sqrt{A^{2}+B^{2}-2AB\,cos\,\theta} Squaring both sides, we get A2+B2+2ABcosθ=A2+B22ABcosθA^{2}+B^{2}+2ABcos\theta=A^{2}+B^{2}-2ABcos\theta 4ABcosθ=0\therefore 4ABcos\theta=0 As A0A\ne0, B0B\ne0 cosθ=0\therefore cos\theta=0 or θ=90\theta=90^{\circ}