Solveeit Logo

Question

Mathematics Question on Vector Algebra

If (a×b)2+(a.b)2=676\left(\vec{a}\times\vec{b}\right)^{2}+\left(\vec{a}.\vec{b}\right)^{2}=676 and b=2,\left|\vec{b}\right|=2, then a\left|\vec{a}\right| is equal to

A

1313

B

2626

C

3939

D

None of these

Answer

1313

Explanation

Solution

Since, (a×b)2+(a.b)2=676\left(\vec{a}\times\vec{b}\right)^{2}+\left(\vec{a}.\vec{b}\right)^{2}=676
(a.bsinθn^)2+(a.bcosθn^)2=676\Rightarrow \left(\left|\vec{a}\right|.\left|\vec{b}\right|sin\,\theta\hat{n}\right)^{2}+\left(\left|\vec{a}\right|.\left|\vec{b}\right|cos\,\theta \hat{n}\right)^{2}=676
a2.b2(sin2θ+cos2θ)=676\Rightarrow \left|\vec{a}\right|^{2}.\left|\vec{b}\right|^{2}\left(sin^{2}\,\theta+cos^{2}\,\theta\right)=676
a2(2)2=676a2=169\Rightarrow \left|\vec{a}\right|^{2}\left(2\right)^{2}=676 \Rightarrow \left|\vec{a}\right|^{2}=169
a=13\Rightarrow \left|\vec{a}\right|=13