Solveeit Logo

Question

Question: If \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\], then \[\d...

If t<1,sinx=2t1+t2,tany=2t1t2\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}, then
dydx\dfrac{dy}{dx} is equal to
(a) 1x\dfrac{1}{x}
(b) 12\dfrac{1}{2}
(c) 12\dfrac{-1}{2}
(d) 1x\dfrac{-1}{x}
(e) 11

Explanation

Solution

To find the value of dydx\dfrac{dy}{dx}, first evaluate dydt\dfrac{dy}{dt}and dxdt\dfrac{dx}{dt}. Then use the formula dydx=dydt×1dxdt\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{1}{\dfrac{dx}{dt}} to get the value of dydx\dfrac{dy}{dx}.

Complete step-by-step answer:
We have the parametric equations t<1,sinx=2t1+t2,tany=2t1t2\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}. We have to evaluate dydx\dfrac{dy}{dx}.
We will first evaluate the values of dydt\dfrac{dy}{dt}and dxdt\dfrac{dx}{dt}. Then, we will rearrange the terms such that dydx=dydt×1dxdt\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{1}{\dfrac{dx}{dt}}to get the value of dydx\dfrac{dy}{dx}.
We will begin by finding the value of dxdt\dfrac{dx}{dt}. We have the parametric equation sinx=2t1+t2\sin x=\dfrac{2t}{1+{{t}^{2}}}. We will differentiate the given equation on both sides with respect to the variable tt. Thus, we have ddt(sinx)=ddt(2t1+t2).....(1)\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right).....\left( 1 \right).
To find the value of ddt(sinx)\dfrac{d}{dt}\left( \sin x \right), we will multiply and divide the equation by dxdx. Thus, we have ddt(sinx)=ddx(sinx)×dxdt\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dx}\left( \sin x \right)\times \dfrac{dx}{dt}.
We know that the first derivative of the function y=sinxy=\sin x is dydx=cosx\dfrac{dy}{dx}=\cos x.
Thus, we have ddt(sinx)=ddx(sinx)×dxdt=cosxdxdt\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dx}\left( \sin x \right)\times \dfrac{dx}{dt}=\cos x\dfrac{dx}{dt}.
We know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. So, we can write cosx=1sin2x\cos x=\sqrt{1-{{\sin }^{2}}x}.
Substituting sinx=2t1+t2\sin x=\dfrac{2t}{1+{{t}^{2}}} in the above equation, we get cosx=1sin2x=1(2t1+t2)2=(1+t2)24t21+t2=1+t4+2t24t21+t2=1+t42t21+t2=(1t2)21+t2=1t21+t2\cos x=\sqrt{1-{{\sin }^{2}}x}=\sqrt{1-{{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}}=\dfrac{\sqrt{{{\left( 1+{{t}^{2}} \right)}^{2}}-4{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{1+{{t}^{4}}+2{{t}^{2}}-4{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{1+{{t}^{4}}-2{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{{{\left( 1-{{t}^{2}} \right)}^{2}}}}{1+{{t}^{2}}}=\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}
Hence, we have ddt(sinx)=cosxdxdt=1t21+t2dxdt.....(2)\dfrac{d}{dt}\left( \sin x \right)=\cos x\dfrac{dx}{dt}=\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\dfrac{dx}{dt}.....\left( 2 \right).
Now, we will evaluate the value of ddt(2t1+t2)\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right). To do so, we will use quotient rule of differentiation which states that if y=f(x)g(x)y=\dfrac{f\left( x \right)}{g\left( x \right)} then we have dydx=g(x)f(x)f(x)g(x)g2(x)\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}.
Thus, we have ddt(2t1+t2)=(1+t2)ddt(2t)2tddt(1+t2)(1+t2)2\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=\dfrac{\left( 1+{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1+{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}.
We know that derivative of any function of the form y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we have ddt(2t1+t2)=(1+t2)ddt(2t)2tddt(1+t2)(1+t2)2=(1+t2)(2)(2t)(2t)(1+t2)2=2t+2t24t2(1+t2)2=2(1t2)(1+t2)2.....(3)\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=\dfrac{\left( 1+{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1+{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{\left( 1+{{t}^{2}} \right)\left( 2 \right)-\left( 2t \right)\left( 2t \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{2t+2{{t}^{2}}-4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{2\left( 1-{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}.....\left( 3 \right). Substituting equation (2),(3)\left( 2 \right),\left( 3 \right) in equation (1)\left( 1 \right), we get 1t21+t2dxdt=2(1t2)(1+t2)2\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\dfrac{dx}{dt}=\dfrac{2\left( 1-{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}.
Simplifying the above equation, we have dxdt=2(1t2)(1+t2)(1t2)=2(1+t2).....(4)\dfrac{dx}{dt}=\dfrac{2\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)\left( 1-{{t}^{2}} \right)}=\dfrac{2}{\left( 1+{{t}^{2}} \right)}.....\left( 4 \right).
We will now find the value of dydt\dfrac{dy}{dt}. We have the parametric equation tany=2t1t2\tan y=\dfrac{2t}{1-{{t}^{2}}}. We will differentiate the given equation on both sides with respect to the variable tt. Thus, we have ddt(tany)=ddt(2t1t2).....(5)\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right).....\left( 5 \right).
To find the value of ddt(tany)\dfrac{d}{dt}\left( \tan y \right), we will multiply and divide the equation by dydy. Thus, we have ddt(tany)=ddy(tany)×dydt\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dy}\left( \tan y \right)\times \dfrac{dy}{dt}.
We know that the first derivative of the function y=tanxy=\tan x is dydx=sec2x\dfrac{dy}{dx}={{\sec }^{2}}x.
Thus, we have ddt(tany)=ddy(tany)×dydt=sec2ydydt\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dy}\left( \tan y \right)\times \dfrac{dy}{dt}={{\sec }^{2}}y\dfrac{dy}{dt}.
We know that 1+tan2y=sec2y1+{{\tan }^{2}}y={{\sec }^{2}}y.
Substituting tany=2t1t2\tan y=\dfrac{2t}{1-{{t}^{2}}} in the above equation, we get sec2y=1+tan2y=1+(2t1t2)2=(1t2)2+4t2(1t2)2=1+t42t2+4t2(1t2)2=1+t4+2t2(1t2)2=(1+t2)2(1t2)2{{\sec }^{2}}y=1+{{\tan }^{2}}y=1+{{\left( \dfrac{2t}{1-{{t}^{2}}} \right)}^{2}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}
Hence, we have ddt(tany)=sec2ydydt=(1+t2)2(1t2)2dydt.....(6)\dfrac{d}{dt}\left( \tan y \right)={{\sec }^{2}}y\dfrac{dy}{dt}=\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\dfrac{dy}{dt}.....\left( 6 \right).
Now, we will evaluate the value of ddt(2t1t2)\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right). To do so, we will use quotient rule of differentiation which states that if y=f(x)g(x)y=\dfrac{f\left( x \right)}{g\left( x \right)} then we have dydx=g(x)f(x)f(x)g(x)g2(x)\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}.
Thus, we have ddt(2t1t2)=(1t2)ddt(2t)2tddt(1t2)(1t2)2\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=\dfrac{\left( 1-{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1-{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}.
We know that derivative of any function of the form y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we have ddt(2t1t2)=(1t2)ddt(2t)2tddt(1t2)(1t2)2=(1t2)(2)(2t)(2t)(1t2)2=22t2+4t2(1t2)2=2(1+t2)(1t2)2.....(7)\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=\dfrac{\left( 1-{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1-{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{\left( 1-{{t}^{2}} \right)\left( 2 \right)-\left( 2t \right)\left( -2t \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{2-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{2\left( 1+{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}.....\left( 7 \right). Substituting equation (6),(7)\left( 6 \right),\left( 7 \right)in equation (5)\left( 5 \right), we get (1+t2)2(1t2)2dydt=2(1+t2)(1t2)2\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\dfrac{dy}{dt}=\dfrac{2\left( 1+{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}.
Simplifying the above equation, we have dydt=2(1+t2).....(8)\dfrac{dy}{dt}=\dfrac{2}{\left( 1+{{t}^{2}} \right)}.....\left( 8 \right).
Dividing equation (8)\left( 8 \right) by equation (4)\left( 4 \right), we get dydtdxdt=2(1+t2)2(1+t2)\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{\dfrac{2}{\left( 1+{{t}^{2}} \right)}}{\dfrac{2}{\left( 1+{{t}^{2}} \right)}}.
Simplifying the above expression, we have dydx=1\dfrac{dy}{dx}=1.
Hence, given t<1,sinx=2t1+t2,tany=2t1t2\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}, the value of dydx\dfrac{dy}{dx}is 11, which is option (e).

Note: We can also solve this question by simplifying the expression using inverse trigonometric functions. For t<1\left| t \right|<1, we can write x=sin1(2t1+t2)=2tan1t,y=tan1(2t1t2)=2tan1tx={{\sin }^{-1}}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=2{{\tan }^{-1}}t,y={{\tan }^{-1}}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=2{{\tan }^{-1}}t and thus, we can write x=yx=y and differentiate it to find the derivative.