Solveeit Logo

Question

Question: If \[\left[ {{{\sin }^{ - 1}}\left( {{{\cos }^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}...

If [sin1(cos1(sin1(tan1x)))]=1,\left[ {{{\sin }^{ - 1}}\left( {{{\cos }^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)} \right)} \right] = 1, where [.]\left[ . \right] denotes the greatest integer function then the values of x are
A. [tansincos1,tansincossin1]\left[ {\tan \sin \cos 1,\tan \sin \cos \sin 1} \right]
B. (tansincos1,tansincossin1)\left( {\tan \sin \cos 1,\tan \sin \cos \sin 1} \right)
C. [1,1]\left[ { - 1,1} \right]
D. [sincostan1,sincossintan1]\left[ {\sin \cos \tan 1,\sin \cos \sin \tan 1} \right]

Explanation

Solution

Hint- Here in this problem the concept of inverse trigonometry and greatest function property has been used which will be explained first then accordingly we will come to the answer of the question. Greatest Integer function is defined as when the input is provided to the function the output is the integer which is less than or equal to the input provided. It is denoted by []\left[ { } \right]

Complete step-by-step answer:
For example
[3.5]=3\left[ {3.5} \right] = 3
The given function is
[sin1(cos1(sin1(tan1x)))]=1\left[ {{{\sin }^{ - 1}}\left( {{{\cos }^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)} \right)} \right] = 1
Now in order to solve, we will let define some variables
Let θ=cos1(sin1(tan1x))\theta = {\cos ^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)
Substitute this value in the above equation
[sin1θ]=1\left[ {{{\sin }^{ - 1}}\theta } \right] = 1
Also we know that from the definition of sin
1θπ21 \leqslant \theta \leqslant \dfrac{\pi }{2}
Therefor the above equation becomes
sin1θsinπ2 sin1θ1  \sin 1 \leqslant \theta \leqslant \sin \dfrac{\pi }{2} \\\ \sin 1 \leqslant \theta \leqslant 1 \\\
Now, θ=cos1(sin1(tan1x))\theta = {\cos ^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right)
Let ϕ=sin1(tan1x)\phi = {\sin ^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)
Therefore
θ=cos1(sin1(tan1x)) θ=cos1ϕ  \theta = {\cos ^{ - 1}}\left( {{{\sin }^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)} \right) \\\ \theta = {\cos ^{ - 1}}\phi \\\
Substitute the value of θ\theta in the equation sin1θ1\sin 1 \leqslant \theta \leqslant 1
sin1cos1ϕ1 cossin1ϕcos1  \sin 1 \leqslant {\cos ^{ - 1}}\phi \leqslant 1 \\\ \cos \sin 1 \leqslant \phi \leqslant \cos 1 \\\
Again let β=tan1x\beta = {\tan ^{ - 1}}x
Therefore ϕ=sin1(tan1x)\phi = {\sin ^{ - 1}}\left( {{{\tan }^{ - 1}}x} \right)
ϕ=sin1β\phi = {\sin ^{ - 1}}\beta
Substitute the value of ϕ\phi in equation cossin1ϕcos1\cos \sin 1 \leqslant \phi \leqslant \cos 1
cossin1sin1βcos1 sincossin1βsincos1  \cos \sin 1 \leqslant {\sin ^{ - 1}}\beta \leqslant \cos 1 \\\ \sin \cos \sin 1 \leqslant \beta \leqslant \sin \cos 1 \\\
As we let β=tan1x\beta = {\tan ^{ - 1}}x substitute it in the above equation we get
sincossin1tan1xsincos1 tansincossin1xtansincos1  \sin \cos \sin 1 \leqslant {\tan ^{ - 1}}x \leqslant \sin \cos 1 \\\ \tan \sin \cos \sin 1 \leqslant x \leqslant \tan \sin \cos 1 \\\
Therefore x lies between tansincossin1xtansincos1\tan \sin \cos \sin 1 \leqslant x \leqslant \tan \sin \cos 1
Hence the correct option is A.

Additional information-
The domain of function is all the values that are allowed as input in the function and range of the function is all the values that a function gives as an output.

Note- In order to solve these types of questions, you need to have a good concept of domain and range of a function. In the above question we define the range of arcsin and then proceed to solve the problem step by step. Learn the domain and range of all trigonometric functions and the concept of solving inequality problems.