Question
Question: If \[{\left| {\overrightarrow C } \right|^2} = 60\]and \[\overrightarrow C \times (\hat i + 2\hat j ...
If C2=60and C×(i^+2j^+5k^)=0, then the value of C∙(−7i^+2j^+3k^)is
A. 42
B. 24
C. 122
D. 12
Solution
We assume the vector C=ai^+bj^+ck^and use property that dot product of the vector to itself gives the square of its magnitude, which gives us an equation in a,b and c. Then we use the method of cross product of two vectors to solve C×(i^+2j^+5k^)=0which will give us other three equations in a,b and c. Using these equations we find the values of constants and write the vector C.
- a∙a=a2
- Dot product of two vectors (a1i^+b1j^+c1k^),(a2i^+b2j^+c2k^)=a1a2+b1b2+c1c2
- Cross product of two vectors (a1i^+b1j^+c1k^),(a2i^+b2j^+c2k^)is given by writing the terms in form of a determinant \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k} \\\ {{a_1}}&{{b_1}}&{{c_1}} \\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = ({b_1}{c_2} - {b_2}{c_1})\hat i - ({a_1}{c_2} - {a_2}{c_1})\hat j + ({a_1}{b_2} - {a_2}{b_1})\hat k.
Complete step-by-step answer:
Let us assume the vector C=ai^+bj^+ck^
No we know that the dot product of vector to itself gives the square of magnitude of the vector, i.e. a∙a=a2. So we take the dot product of the vector C=ai^+bj^+ck^ with itself.
⇒C∙C=C2
Substituting the value of C=ai^+bj^+ck^ and C2=60
⇒(ai^+bj^+ck^)∙(ai^+bj^+ck^)=60
Using the formula for dot product of two vectors (a1i^+b1j^+c1k^),(a2i^+b2j^+c2k^)=a1a2+b1b2+c1c2
We can write
⇒a×a+b×b+c×c=60
⇒a2+b2+c2=60 … (1)
Now we take the cross product of C×(i^+2j^+5k^)=0, where C=ai^+bj^+ck^.
⇒(ai^+bj^+ck^)×(i^+2j^+5k^)=0
We can write the cross product in determinant form as
\Rightarrow {(5b)^2} = {(2c)^2} \\
\Rightarrow 25{b^2} = 4{c^2} \\
\Rightarrow {(5a)^2} = {(c)^2} \\
\Rightarrow 25{a^2} = {c^2} \\
\Rightarrow {(2a)^2} = {(b)^2} \\
\Rightarrow 4{a^2} = {b^2} \\
\Rightarrow {a^2} + 4{a^2} + 25{a^2} = 60 \\
\Rightarrow 30{a^2} = 60 \\
\Rightarrow \dfrac{{30{a^2}}}{{30}} = \dfrac{{60}}{{30}} \\
\Rightarrow {a^2} = 2 \\
\Rightarrow (\sqrt 2 \hat i + 2\sqrt 2 \hat j + 5\sqrt 2 \hat k) \bullet ( - 7\hat i + 2\hat j + 3\hat k) = \sqrt 2 ( - 7 + 4 + 15) \\
\Rightarrow (\sqrt 2 \hat i + 2\sqrt 2 \hat j + 5\sqrt 2 \hat k) \bullet ( - 7\hat i + 2\hat j + 3\hat k) = 12\sqrt 2 \\