Question
Question: If \[\left| {\overline a } \right| = \left| {\overline b } \right| = 1\] and \(\left| {\overline a +...
If ∣a∣=b=1 and a+b=3 , then the value of (3a−4b)⋅(2a+5b) is
A.-21
B. 2−21
C.21
D. 221
Solution
First find the product (3a−4b)⋅(2a+5b) .
Now, ∣a∣=b=1⇒∣a∣2=b2=1 .
Thus, using the square of the equation a+b=3 , find ∣a∣b .
Now, when we get all values of ∣a∣b , ∣a∣2,b2 , we will substitute them in the product of (3a−4b)⋅(2a+5b) and get the correct answer.
Complete step-by-step answer:
It is known that, ∣a∣=b=1 and a+b=3 .
Now, expanding the product (3a−4b)⋅(2a+5b) will give
(3a−4b)⋅(2a+5b)=6∣a∣2−8ab+15ab−20b2
=6∣a∣2+7ab−20b2 ... (1)
Also, ∣a∣=1 and b=1
∴∣a∣2=1 and b2=1 .
And a+b=3
Now, substituting the values ∣a∣2=1 , b2=1 and ∣a∣b=21 in equation (1)
=6(1)+7(21)−20(1) =212+7−40 =−221
Thus, (3a−4b)⋅(2a+5b) =2−21 .
Option (B) is correct.
Note: The dot product of any two vectors can be found using normal multiplication method.
For example, here (3a−4b)⋅(2a+5b)=6∣a∣2−8ab+15ab−20b2 .
This is similar to finding (3a−4b)(2a+5b)=6a2+15ab−8ab−20b2