Solveeit Logo

Question

Question: If \[\left| {\overline a } \right| = \left| {\overline b } \right| = 1\] and \(\left| {\overline a +...

If a=b=1\left| {\overline a } \right| = \left| {\overline b } \right| = 1 and a+b=3\left| {\overline a + \overline b } \right| = \sqrt 3 , then the value of (3a4b)(2a+5b)\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) is
A.-21
B. 212\dfrac{{ - 21}}{2}
C.21
D. 212\dfrac{{21}}{2}

Explanation

Solution

First find the product (3a4b)(2a+5b)\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) .
Now, a=b=1a2=b2=1\left| {\overline a } \right| = \left| {\overline b } \right| = 1 \Rightarrow {\left| {\overline a } \right|^2} = {\left| {\overline b } \right|^2} = 1 .
Thus, using the square of the equation a+b=3\left| {\overline a + \overline b } \right| = \sqrt 3 , find ab\left| {\overline a } \right|\left| {\overline b } \right| .
Now, when we get all values of ab\left| {\overline a } \right|\left| {\overline b } \right| , a2,b2{\left| {\overline a } \right|^2},{\left| {\overline b } \right|^2} , we will substitute them in the product of (3a4b)(2a+5b)\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) and get the correct answer.

Complete step-by-step answer:
It is known that, a=b=1\left| {\overline a } \right| = \left| {\overline b } \right| = 1 and a+b=3\left| {\overline a + \overline b } \right| = \sqrt 3 .
Now, expanding the product (3a4b)(2a+5b)\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) will give
(3a4b)(2a+5b)=6a28ab+15ab20b2\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) = 6{\left| {\overline a } \right|^2} - 8\left| {\overline a \overline b } \right| + 15\left| {\overline a \overline b } \right| - 20{\left| {\overline b } \right|^2}
=6a2+7ab20b2= 6{\left| {\overline a } \right|^2} + 7\left| {\overline a \overline b } \right| - 20{\left| {\overline b } \right|^2} ... (1)
Also, a=1\left| {\overline a } \right| = 1 and b=1\left| {\overline b } \right| = 1
a2=1\therefore {\left| {\overline a } \right|^2} = 1 and b2=1{\left| {\overline b } \right|^2} = 1 .
And a+b=3\left| {\overline a + \overline b } \right| = \sqrt 3

a+b2=(3)2 a2+b2+2ab=3 1+1+2ab=3 2ab=32 ab=12  \therefore {\left| {\overline a + \overline b } \right|^2} = {\left( {\sqrt 3 } \right)^2} \\\ \therefore {\left| {\overline a } \right|^2} + {\left| {\overline b } \right|^2} + 2\left| {\overline a } \right|\left| {\overline b } \right| = 3 \\\ \therefore 1 + 1 + 2\left| {\overline a } \right|\left| {\overline b } \right| = 3 \\\ \therefore 2\left| {\overline a } \right|\left| {\overline b } \right| = 3 - 2 \\\ \therefore \left| {\overline a } \right|\left| {\overline b } \right| = \dfrac{1}{2} \\\

Now, substituting the values a2=1{\left| {\overline a } \right|^2} = 1 , b2=1{\left| {\overline b } \right|^2} = 1 and ab=12\left| {\overline a } \right|\left| {\overline b } \right| = \dfrac{1}{2} in equation (1)
=6(1)+7(12)20(1) =12+7402 =212  = 6\left( 1 \right) + 7\left( {\dfrac{1}{2}} \right) - 20\left( 1 \right) \\\ = \dfrac{{12 + 7 - 40}}{2} \\\ = - \dfrac{{21}}{2} \\\
Thus, (3a4b)(2a+5b)\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) =212 = \dfrac{{ - 21}}{2} .
Option (B) is correct.

Note: The dot product of any two vectors can be found using normal multiplication method.
For example, here (3a4b)(2a+5b)=6a28ab+15ab20b2\left( {3\overline a - 4\overline b } \right) \cdot \left( {2\overline a + 5\overline b } \right) = 6{\left| {\overline a } \right|^2} - 8\left| {\overline a \overline b } \right| + 15\left| {\overline a \overline b } \right| - 20{\left| {\overline b } \right|^2} .
This is similar to finding (3a4b)(2a+5b)=6a2+15ab8ab20b2\left( {3a - 4b} \right)\left( {2a + 5b} \right) = 6{a^2} + 15ab - 8ab - 20{b^2}