Solveeit Logo

Question

Question: If \(\left( \operatorname{secA}+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{...

If (secA+tanA)(secB+tanB)(secC+tanC)=(secAtanA)(secBtanB)(secCtanC)\left( \operatorname{secA}+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\left( \operatorname{secA}-\operatorname{tanA} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right) prove that each is equal to ±1\pm 1.

Explanation

Solution

Hint: Relate the identity sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 with the identity a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) and express it as (secθtanθ)(secθ+tanθ)=1\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1. Put θ=A,B,C\theta =A,B,C in this expression and multiply them and hence, use the given result in the problem to prove the given statement.

Complete step-by-step answer:
As we know the trigonometric identity related to sec,tan\sec ,\tan is given as
sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 ………………… (i)
As, we know the algebraic identity of a2b2{{a}^{2}}-{{b}^{2}} can be given as
a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)………………… (ii)
So, applying the relation of equation (ii) with the equation (i), we get
(secθtanθ)(secθ+tanθ)=1\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1…………….(iii)
Now, coming to the question, it is given that the term (secA+tanA)(secB+tanB)(secC+tanC),(secAtanA)(secBtanB)(secCtanC)\left( \operatorname{secA}+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right),\left( \operatorname{secA}-\operatorname{tanA} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right) are equal to each other, then we need to prove that both will be equal to±1\pm 1.
So, we have
(secA+tanA)(secB+tanB)(secC+tanC)=(secAtanA)(secBtanB)(secCtanC)\left( \operatorname{secA}+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\left( \operatorname{secA}-\operatorname{tanA} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right) ………(iv)
Now, put θ=A,B,C\theta =A,B,C in the equation (iii) to get the equations related to equation (iv).
So, we get equations as
If θ=A\theta =A
(secAtanA)(secA+tanA)=1\left( \sec A-\tan A \right)\left( \sec A+\operatorname{tanA} \right)=1………… (v)
If θ=B\theta =B
(secBtanB)(secB+tanB)=1\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)=1 ………………(vi)
If θ=C\theta =C
(secCtanC)(secC+tanC)=1\left( \operatorname{secC}-\operatorname{tanC} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=1 ………………(vii)
Now, we can multiply the equations (v), (vi) and (vii) and hence, we get
(secAtanA)(secA+tanB)(secBtanB)(secB+tanB)(secCtanC)(secC+tanC)=1\left( \sec A-\tan A \right)\left( \sec A+\operatorname{tanB} \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=1
Now, rearrange the terms just similar to equation (iv), hence, we can rewrite the above expression as
[(secA+tanA)(secB+tanB)(secC+tanC)][(secAtanA)(secBtanB)(secCtanC)]=1\left[ \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right) \right]\left[ \left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right) \right]=1 …………… (viii)
Now, we know that the values of terms written in big brackets of the above equations are equal from the equation (iv). So, we can replace one by another. So, we get
(secA+tanA)(secB+tanB)(secC+tanC)(secA+tanA)(secB+tanB)(secC+tanC)=1 (secA+tanA)2(secB+tanB)2(secC+tanC)2=1 [(secA+tanA)(secB+tanB)(secC+tanC)]2=1 \begin{aligned} & \Rightarrow \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)\left( \sec A+\operatorname{tanA} \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \sec C+\operatorname{tanC} \right)=1 \\\ & \Rightarrow {{\left( \sec A+\tan A \right)}^{2}}{{\left( \operatorname{secB}+\operatorname{tanB} \right)}^{2}}{{\left( \operatorname{secC}+\operatorname{tanC} \right)}^{2}}=1 \\\ & \Rightarrow {{\left[ \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right) \right]}^{2}}=1 \\\ \end{aligned}
And hence, taking square root to both sides, we get
(secA+tanA)(secB+tanB)(secC+tanC)=±1\left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\pm 1 …………….. (ix)
Now, we know that the above term in LHS will be equal to (secAtanA)(secBtanB)(secCtanC)\left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right) from the equation (iv). Hence, we get the values of both as
(secA+tanA)(secB+tanB)(secC+tanC)=(secAtanA)(secBtanB)(secCtanC)=±1\left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)=\left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)=\pm 1
Hence, it is proved.

Note: Another approach for solving the question would be that we can multiply both sides by
(secAtanA)(secBtanB)(secCtanC)(secA+tanA)(secB+tanB)(secC+tanC)\left( \sec A-\tan A \right)\left( \operatorname{secB}-\operatorname{tanB} \right)\left( \operatorname{secC}-\operatorname{tanC} \right)\Rightarrow \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right), And hence, we get
Let us multiply given relation by
(secA+tanA)(secB+tanB)(secC+tanC)\left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right)
Hence, we get
[(secA+tanA)(secB+tanB)(secC+tanC)]2=(sec2Atan2A)(sec2Btan2B)(sec2Ctan2C){{\left[ \left( \sec A+\tan A \right)\left( \operatorname{secB}+\operatorname{tanB} \right)\left( \operatorname{secC}+\operatorname{tanC} \right) \right]}^{2}}=\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)\left( {{\sec }^{2}}B-{{\tan }^{2}}B \right)\left( {{\sec }^{2}}C-{{\tan }^{2}}C \right)
Where, use (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.
Now, replace R.H.S of above equation by 1, with using trigonometric identity
(sec2θ+tan2θ)=1\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)=1.
One may change secθ\sec \theta to 1cosθ,tanθ\dfrac{1}{\cos \theta },tan\theta to sinθcosθ\dfrac{\sin \theta }{cos\theta } and hence, can use identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +co{{s}^{2}}\theta =1 . So, it can be another approach for the question.
Observing the identity sin2θcos2θ=1{{\sin }^{2}}\theta -co{{s}^{2}}\theta =1 of the form of (secθtanθ)(secθ+tanθ)=1\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1 is the key point of the question.