Solveeit Logo

Question

Question: If \(\left\{ \frac{p - q}{p},\frac{p - q}{q} \right\}\) and \(a(x^{2} + 1) - (a^{2} + 1)x = 0\) are ...

If {pqp,pqq}\left\{ \frac{p - q}{p},\frac{p - q}{q} \right\} and a(x2+1)(a2+1)x=0a(x^{2} + 1) - (a^{2} + 1)x = 0 are the roots of the equation

a,1aa,\frac{1}{a} then a,12aa,\frac{1}{2a}

A

b

B

– b

C

x48x29=0x^{4} - 8x^{2} - 9 = 0

D

±3,6mu±1\pm 3,\mspace{6mu} \pm 1

Answer

x48x29=0x^{4} - 8x^{2} - 9 = 0

Explanation

Solution

Given equation

1α3+1β3\frac{1}{\alpha^{3}} + \frac{1}{\beta^{3}}

12- \frac{1}{2}12\frac{1}{2}

Now 14\frac{1}{4}

= 1+i1 + i.