Question
Question: If \(\left( \frac{3 - 4ix}{3 + 4ix} \right) =\) then \(\alpha - i\beta(\alpha,\beta\text{real}),\) +...
If (3+4ix3−4ix)= then α−iβ(α,βreal), +α2−β2=−1 and α2+β2=1 differ by a.
A
Multiple of α2−β2=2
B
Multiple of z1
C
Greater than ∣z1∣=1
D
Less than z2
Answer
Multiple of α2−β2=2
Explanation
Solution
We know that the principal value of arg(4−9i13−5i)=arg(13−5i)−arg(4−9i) lies between =−tan−1(135)+tan−149=4π and z1=r1(cosθ1+isinθ1).