Solveeit Logo

Question

Question: If \(\left( \frac{3 - 4ix}{3 + 4ix} \right) =\) then \(\alpha - i\beta(\alpha,\beta\text{real}),\) +...

If (34ix3+4ix)=\left( \frac{3 - 4ix}{3 + 4ix} \right) = then αiβ(α,βreal),\alpha - i\beta(\alpha,\beta\text{real}), +α2β2=1\alpha^{2} - \beta^{2} = - 1 and α2+β2=1\alpha^{2} + \beta^{2} = 1 differ by a.

A

Multiple of α2β2=2\alpha^{2} - \beta^{2} = 2

B

Multiple of z1z_{1}

C

Greater than z1=1|z_{1}| = 1

D

Less than z2z_{2}

Answer

Multiple of α2β2=2\alpha^{2} - \beta^{2} = 2

Explanation

Solution

We know that the principal value of arg(135i49i)=arg(135i)arg(49i)\arg\left( \frac{13 - 5i}{4 - 9i} \right) = arg(13 - 5i) - arg(4 - 9i) lies between =tan1(513)+tan194=π4= - \tan^{- 1}\left( \frac{5}{13} \right) + \tan^{- 1}\frac{9}{4} = \frac{\pi}{4} and z1=r1(cosθ1+isinθ1)z_{1} = r_{1}(\cos\theta_{1} + i\sin\theta_{1}).