Solveeit Logo

Question

Question: If \(\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib\), then...

If (1i1+i)100=a+ib\left( \frac{1 - i}{1 + i} \right)^{100} = a + ib, then

A

a = 2, b = –1

B

a = 1, b = 0

C

a = 0, b = 1

D

a = –1, b = 2

Answer

a = 1, b = 0

Explanation

Solution

Sol.1i1+i×1i1i=i=cos(π2)+isin(π2)(i)100=cos(50π)+isin(50π)\frac{\mathbf{1 - i}}{\mathbf{1 + i}}\mathbf{\times}\frac{\mathbf{1 - i}}{\mathbf{1 - i}}\mathbf{= - i =}\mathbf{\cos}\left( \mathbf{-}\frac{\mathbf{\pi}}{\mathbf{2}} \right)\mathbf{+ i}\mathbf{\sin}\left( \mathbf{-}\frac{\mathbf{\pi}}{\mathbf{2}} \right)\mathbf{\Rightarrow ( - i}\mathbf{)}^{\mathbf{100}}\mathbf{=}\mathbf{\cos}\mathbf{(}\mathbf{- 50\pi) + i}\mathbf{\sin}\mathbf{(}\mathbf{- 50\pi)} = 1+i(0)\mathbf{1 + i(0)} a=1,b=0\mathbf{\Rightarrow}\mathbf{a = 1,b = 0}