Solveeit Logo

Question

Mathematics Question on complex numbers

If z25z1=5\left|\frac{z-25}{z-1}\right|=5 , the value of |z|

A

3

B

4

C

5

D

6

Answer

5

Explanation

Solution

Given that
z25z1=5z25=5z1\left|\frac{z-25}{z-1}\right|=5 \Rightarrow\left|z-25\right|=5\left|z-1\right|
Let Z = x + iy, then
x+iy25=5x+iy1\left|x+iy-25\right|=5\left|x+iy-1\right|
(x25)+iy=5x1+iy\Rightarrow \left|\left(x-25\right)+iy\right|=5\left|x-1+iy\right|
Squaring both sides, we get
\left(x-25\right)^{2}+y^{2}=25 \left\\{\left(x-1\right)^{2}+y^{2}\right\\}
x250x+625+y2\Rightarrow x^{2}-50x+625+y^{2}
=25x250x+25+25y2\quad\quad\quad\quad\quad\quad=25x^{2} -50x+25+25y^{2}
24x2+24y2600=0\Rightarrow24x^{2}+24 y^{2}-600=0
x2+y225=0\Rightarrow x^{2}+y^{2}-25=0
x+iy2=25Z2=52\Rightarrow\left|x+iy\right|^{2}=25 \Rightarrow \left|Z\right|^{2}=5^{2}
Z=5\Rightarrow\left|Z\right|=5