Question
Question: If \(\left( \frac { \sin \theta } { \sin \phi } \right) ^ { 2 } = \frac { \tan \theta } { \tan \phi...
If (sinϕsinθ)2=tanϕtanθ=3 then the value of θ and ϕ are
A
θ=nπ±3π,ϕ=nπ±6π
B
θ=nπ−3π,ϕ=nπ−6π
C
θ=nπ±2π,ϕ=nπ+3π
D
None of these
Answer
θ=nπ±3π,ϕ=nπ±6π
Explanation
Solution
(sinϕsinθ)2=tanϕtanθ ⇒sinθcosθ=sinϕcosϕ ⇒sin2θ=sin2ϕ
2θ=π−2ϕ ⇒θ=2π−ϕ
But, tanϕtanθ=3 ⇒cotθtanθ=3 ⇒tan2θ=3 ⇒θ=nπ±3π so
that ϕ=nπ±6π
Trick: Check with the options for n=0,n=1 .