Solveeit Logo

Question

Question: If \(\left( \frac { \sin \theta } { \sin \phi } \right) ^ { 2 } = \frac { \tan \theta } { \tan \phi...

If (sinθsinϕ)2=tanθtanϕ=3\left( \frac { \sin \theta } { \sin \phi } \right) ^ { 2 } = \frac { \tan \theta } { \tan \phi } = 3 then the value of θ\theta and ϕ\phi are

A

θ=nπ±π3,ϕ=nπ±π6\theta = n \pi \pm \frac { \pi } { 3 } , \phi = n \pi \pm \frac { \pi } { 6 }

B

θ=nππ3,ϕ=nππ6\theta = n \pi - \frac { \pi } { 3 } , \phi = n \pi - \frac { \pi } { 6 }

C

θ=nπ±π2,ϕ=nπ+π3\theta = n \pi \pm \frac { \pi } { 2 } , \phi = n \pi + \frac { \pi } { 3 }

D

None of these

Answer

θ=nπ±π3,ϕ=nπ±π6\theta = n \pi \pm \frac { \pi } { 3 } , \phi = n \pi \pm \frac { \pi } { 6 }

Explanation

Solution

(sinθsinϕ)2=tanθtanϕ\left( \frac { \sin \theta } { \sin \phi } \right) ^ { 2 } = \frac { \tan \theta } { \tan \phi } sinθcosθ=sinϕcosϕ\Rightarrow \sin \theta \cos \theta = \sin \phi \cos \phi sin2θ=sin2ϕ\Rightarrow \sin 2 \theta = \sin 2 \phi

2θ=π2ϕ2 \theta = \pi - 2 \phi θ=π2ϕ\Rightarrow \theta = \frac { \pi } { 2 } - \phi

But, tanθtanϕ=3\frac { \tan \theta } { \tan \phi } = 3 tanθcotθ=3\Rightarrow \frac { \tan \theta } { \cot \theta } = 3 tan2θ=3\Rightarrow \tan ^ { 2 } \theta = 3 θ=nπ±π3\Rightarrow \theta = n \pi \pm \frac { \pi } { 3 } so

that ϕ=nπ±π6\phi = n \pi \pm \frac { \pi } { 6 }

Trick: Check with the options for n=0,n=1n = 0 , n = 1 .