Question
Mathematics Question on Complex Numbers and Quadratic Equations
If (23+i23)50=325(x+iy), where x and y are real, then the ordered pair (x,y) is
A
(−3,0)
B
(0,3)
C
(0,−3)
D
(21,23)
Answer
(21,23)
Explanation
Solution
Let z=23+i23
r=49+43=412=3
θ=tan−1(2323)
=tan−1(31)=6π
∴23+2i3=3e6iπ
∴(23+i23)50=(3e6iπ)50
=(3)50(e6iπ)50=325e650π
⇒(23+2i3)50=325e3i25π
=325(cos325π+isin325π)
=325(cos1500+isin1500)
=325[cos(360×4+60)+isin(360)×4+60)]
=325(cos60+isin60)
⇒(23+i23)50=325(21+i23) ...(i)
According to question,
(23+i23)50=325(x+iy)
325(21+i23)=325(x+iy)
which is true only when x=21,y=23