Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If (32+i32)50=325(x+iy),\left(\frac{3}{2}+i\frac{\sqrt{3}}{2}\right)^{50} \, =3^{25} \left(x+iy\right), where xx and yy are real, then the ordered pair (x,y)(x,y) is

A

(3,0)(-3, 0)

B

(0,3)(0, 3)

C

(0,3)(0, -3)

D

(12,32)\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)

Answer

(12,32)\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)

Explanation

Solution

Let z=32+i32z=\frac{3}{2}+i \frac{\sqrt{3}}{2}
r=94+34=124=3r=\sqrt{\frac{9}{4}+\frac{3}{4}}=\sqrt{\frac{12}{4}}=\sqrt{3}
θ=tan1(3232)\theta =\tan ^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}}\right)
=tan1(13)=π6=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}
32+i32=3eiπ6\therefore \frac{3}{2}+\frac{i \sqrt{3}}{2}=\sqrt{3} e^{\frac{i \pi}{6}}
(32+i32)50=(3eiπ6)50\therefore \left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=\left(\sqrt{3} e^{\frac{i \pi}{6}}\right)^{50}
=(3)50(eiπ6)50=325e50π6=(\sqrt{3})^{50}\left(e^{\frac{i \pi}{6}}\right)^{50}=3^{25} e^{\frac{50 \pi}{6}}
(32+i32)50=325ei25π3\Rightarrow\left(\frac{3}{2}+\frac{i \sqrt{3}}{2}\right)^{50}=3^{25} e^{\frac{i 25 \pi}{3}}
=325(cos25π3+isin25π3)=3^{25}\left(\cos \frac{25 \pi}{3}+i \sin \frac{25 \pi}{3}\right)
=325(cos1500+isin1500)=3^{25}(\cos 1500+i \sin 1500)
=325[cos(360×4+60)+isin(360)×4+60)]\left.=3^{25}[\cos (360 \times 4+60)+i \sin (360) \times 4+60)\right]
=325(cos60+isin60)=3^{25}(\cos 60+i \sin 60)
(32+i32)50=325(12+i32)\Rightarrow\left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=3^{25}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) ...(i)
According to question,
(32+i32)50=325(x+iy)\left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=3^{25}(x +i y)
325(12+i32)=325(x+iy)3^{25}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=3^{25}(x +i y)
which is true only when x=12,y=32x=\frac{1}{2}, y=\frac{\sqrt{3}}{2}