Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If (1+i1i)m=1\left( \frac{1 + i}{1 - i} \right)^m =1, then the least positive integral value of mm is

A

2

B

3

C

4

D

1

Answer

4

Explanation

Solution

We have,
(1+i1i)m=1\left(\frac{1+i}{1-i}\right)^{m}=1
[1+i1i×1+i1+i]m=1\Rightarrow \left[\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right]^{m}=1
[1+2i+i21i2]m=1\Rightarrow \left[\frac{1+2 i+i^{2}}{1-i^{2}}\right]^{m}=1
[1+2i11(1)]m=1[i2=1]\Rightarrow \left[\frac{1+2 i-1}{1-(-1)}\right]^{m}=1 \left[\because i^{2}=-1\right]
[2i2]m=1\Rightarrow \left[\frac{2 i}{2}\right]^{m}=1
im=1\Rightarrow i^{m}=1
im=14[i4=1]\Rightarrow i^{m}=1^{4} [\because i^4 = 1]
m=4\Rightarrow m=4