Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If (1i1+i)96=a+ib\left( \frac{ 1 - i}{1 + i}\right)^{96} = a + ib then (a,b) is

A

(1,1)

B

(1,0)

C

(0,1)

D

(0,-1)

Answer

(1,0)

Explanation

Solution

1i1+i=1i1+i×1i1i=1+i22i1i2=i\frac{1-i}{1+i} = \frac{1-i}{1+i} \times\frac{1-i}{1-i} = \frac{1+i^{2} -2i}{1-i^{2}} =-i
(1i1+i)96=a+ib\therefore \left(\frac{1-i}{1+i}\right)^{96} = a +ib
(i)96=a+ib\Rightarrow \left(-i\right)^{96} =a + ib
1=a+ib\Rightarrow 1 =a + ib
(a,b)(1,0)\therefore \left(a,b\right)\equiv \left(1,0\right)