Solveeit Logo

Question

Mathematics Question on Sequences and Series

If (1α+1+1α+2++1α+1012)(121+143+165++120242023)\left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \dots + \frac{1}{\alpha + 1012} \right) - \left( \frac{1}{2 \cdot 1} + \frac{1}{4 \cdot 3} + \frac{1}{6 \cdot 5} + \dots + \frac{1}{2024 \cdot 2023} \right)

Answer

Step 1: First Sum Expression

We are given:

S1=k=110121α+kS_1 = \sum_{k=1}^{1012} \frac{1}{\alpha + k}

This is the sum of the reciprocals of consecutive integers starting from α+1\alpha + 1 to α+1012\alpha + 1012.

Step 2: Second Sum Expression

The second sum is:

S2=k=1101212k(2k1)S_2 = \sum_{k=1}^{1012} \frac{1}{2k \cdot (2k - 1)}

We can simplify each term of the second sum:

12k(2k1)=12k112k\frac{1}{2k \cdot (2k - 1)} = \frac{1}{2k - 1} - \frac{1}{2k}

Thus, the second sum S2S_2 becomes:

S2=k=11012(12k112k)S_2 = \sum_{k=1}^{1012} \left( \frac{1}{2k - 1} - \frac{1}{2k} \right)

This is a telescoping series, and many terms cancel out. After cancellation, we are left with:

S2=112024S_2 = 1 - \frac{1}{2024}

Step 3: Combine the Two Sums

Now, we substitute both sums S1S_1 and S2S_2 into the given equation:

S1S2=12024S_1 - S_2 = \frac{1}{2024}

Substitute S2S_2:

S1(112024)=12024S_1 - \left( 1 - \frac{1}{2024} \right) = \frac{1}{2024}

Simplifying the equation:

S11+12024=12024S_1 - 1 + \frac{1}{2024} = \frac{1}{2024}

S1=1S_1 = 1

Step 4: Solving for α\alpha

We know that:

S1=k=110121α+k=1S_1 = \sum_{k=1}^{1012} \frac{1}{\alpha + k} = 1

We can now express the equation as:

(1α+1+1α+2++1α+1012)=(11+12+13++12023)+12024\left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} \right) = \left( \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2023} \right) + \frac{1}{2024}

Rewriting this as:

(1α+1+1α+2++1α+1012)=(1+12+13++12023)+12024\left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} \right) = \left( 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2023} \right) + \frac{1}{2024}

This simplifies to:

1α+1+1α+2++1α+1012=1+1+12024\frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} = 1 + 1 + \frac{1}{2024}

The equation simplifies to:

α=1011\alpha = 1011

Thus, the value of α\alpha is: 1011