Solveeit Logo

Question

Question: If \(\left( \frac { 1 + a } { 3 } \right)\) and \(\left( \frac { 1 - \mathrm { a } } { 4 } \right...

If (1+a3)\left( \frac { 1 + a } { 3 } \right) and (1a4)\left( \frac { 1 - \mathrm { a } } { 4 } \right) are probability of two mutually exclusive events, then set of all values of a is:

A

-1 ≤ a ≤ 1

B
  • 7 ≤ a ≤ 5
C
  • 1 ≤ a ≤ 2
D
  • 4 ≤ a ≤ 1
Answer

-1 ≤ a ≤ 1

Explanation

Solution

Since, 0 ≤ ⇒ -1 ≤ a ≤ 2

and 0 ≤ 1a4\frac { 1 - \mathrm { a } } { 4 } ≤ 1 ⇒ -3 ≤ a ≤ 1

Also, as 1+a3\frac { 1 + \mathrm { a } } { 3 } and 1a4\frac { 1 - \mathrm { a } } { 4 } are the probabilities of two

mutually exclusive events.

0 ≤ 1+a3+1a4\frac { 1 + \mathrm { a } } { 3 } + \frac { 1 - \mathrm { a } } { 4 } ≤ 1 ⇒ -7 ≤ a ≤ 5.

From equation (i), (ii) and (iii), we get - 1 ≤ a ≤ 1.