Solveeit Logo

Question

Question: If \( {\left[ {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = {3^{25}}(x + iy) \) where x a...

If [32+i32]50=325(x+iy){\left[ {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = {3^{25}}(x + iy) where x and y are real then the ordered pair (x , y) \left( {x{\text{ }},{\text{ }}y} \right) is
(1)\left( 1 \right) (3 , 0) \left( { - 3{\text{ }},{\text{ }}0} \right)
(2)\left( 2 \right) (0 , 3) \left( {0{\text{ }},{\text{ }}3} \right)
(3)\left( 3 \right) (0 , 3) \left( {0{\text{ }},{\text{ }} - 3} \right)
(4)\left( 4 \right) (12,32)\left( {\dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right)

Explanation

Solution

Hint : We have to find an ordered pair of (x,y) \left( {x,y} \right) . We solve this question using the concept of the cube root of unity . We should also have the knowledge of the identities of complex numbers . Firstly we have to make the equation in terms of one of the roots of unity and then comparing both the sides and then evaluating the value of xx and yy .

Complete step-by-step answer :
Given : [32+i32]50=325(x+iy){\left[ {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = {3^{25}}(x + iy)
Taking , 3\sqrt 3 common from the L.H.S. , we get
[3(32+i2)]50=325(x+iy){\left[ {\sqrt 3 \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)} \right] ^{50}} = {3^{25}}(x + iy)
Taking 3\sqrt 3 out of the bracket , we get
325[32+i2]50=325(x+iy){3^{25}}{\left[ {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right] ^{50}} = {3^{25}}(x + iy)
Cancelling the terms
[32+i2]50=(x+iy){\left[ {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right] ^{50}} = (x + iy)
We know , i2=1{i^2} = - 1
[i232+i2]50=(x+iy){\left[ {\dfrac{{ - {i^2}\sqrt 3 }}{2} + \dfrac{i}{2}} \right] ^{50}} = (x + iy)
Taking in common from the L.H.S.
i50[i32+12]50=(x+iy){i^{50}}{\left[ {\dfrac{{ - i\sqrt 3 }}{2} + \dfrac{1}{2}} \right] ^{50}} = (x + iy)
We also know , i=1i = \sqrt { - 1} and the values of i repeats in multiples of 4 4
So, simplifying the equation
i4×12+2[12i×32]50=(x+iy){i^{4 \times 12 + 2}}{\left[ {\dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = (x + iy)
We know , i(4n+2)=i2{i^{(4n + 2)}} = {i^2} and i2=1{i^2} = - 1
[12i×32]50=(x+iy)- {\left[ {\dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right] ^{50}} = (x + iy)
Also ,
[(12+i×32)]50=(x+iy)- {\left[ { - \left( {\dfrac{{ - 1}}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right)} \right] ^{50}} = (x + iy)
As ,
[12+i×32]\left[ {\dfrac{{ - 1}}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right] is one root of unity
So ,
Let ω=12+i×32 \omega = - \dfrac{1}{2} + i \times \dfrac{{\sqrt 3 }}{2}
Then , the equation becomes ω50=x+iy {\omega ^{50}} = x + iy
Similarly , roots of unity also follows the rule of iota(   i \;i ) i.e. the values of ω repeats in multiples of 4
So,
ω4×12+2=x+iy- {\omega ^{4 \times 12 + 2}} = x + iy
We know , i(4n+2)=i2{i^{(4n + 2)}} = {i^2} and i2=1{i^2} = - 1
Similarly , ω(4n+2)=ω2{\omega ^{(4n + 2)}} = {\omega ^2}
ω2=x+iy- {\omega ^2} = x + iy
As we assumed that (12+i×32)\left( { - \dfrac{1}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right) is one of the complex root of unity
So , the other complex root of unity is (12i×32)\left( { - \dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right)
i.e.
ω2=(12i×32){\omega ^2} = \left( { - \dfrac{1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right)
Putting ω2{\omega ^2} in equation , then
(12i×32)=(x+iy)- \left( {\dfrac{-1}{2} - i \times \dfrac{{\sqrt 3 }}{2}} \right) = \left( {x + iy} \right)
(12+i×32)=(x+iy)\left( {\dfrac{{ 1}}{2} + i \times \dfrac{{\sqrt 3 }}{2}} \right) = \left( {x + iy} \right)
Comparing the real part with the real part and complex part with complex part , we get
x = 12x{\text{ }} = {\text{ }}\dfrac{1}{2} and y=32y = \dfrac{{\sqrt 3 }}{2}
Hence , The value of ordered pair (x,y)=(12,32) \left( {x,y} \right) = \left( {\dfrac{{ 1}}{2},\dfrac{{\sqrt 3 }}{2}} \right) .
Thus , the correct option is (4) \left( 4 \right) .
So, the correct answer is “Option 4”.

Note : The equation of the cube root of the unit is given as : ω2+ω+1=0{\omega ^2} + \omega + 1 = 0 . We can calculate the value of ω\omega by using the quadratic formula . The quadratic formula is b±[b24ac]2a \dfrac{{\sqrt { - b \pm [{b^2} - 4ac] } }}{{2a}} . Where aa is the coefficient of ω2{\omega ^2} , bb is the coefficient of ω\omega and cc is the coefficient of the constant term in the quadratic equation . Two roots of unity are complex numbers and one is a real number .