Solveeit Logo

Question

Question: If \(\left( \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} \right)\)then \(n\)...

If (cosπ2+isinπ2)\left( \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} \right)then nn

A

1

B

0

C

(1+cosθ+isinθi+sinθ+icosθ)4=cosnθ+isinnθ\left( \frac{1 + \cos\theta + i\sin\theta}{i + \sin\theta + i\cos\theta} \right)^{4} = \cos n\theta + i\sin n\theta

D

None of these

Answer

0

Explanation

Solution

If zz ......(i)

We know that if two complex numbers are equal, their moduli must also be equal, therefore from (i), we have

z2=z2z2=zˉ2z=zˉ|z^{2}| = |z|^{2}|z^{2}| = |\bar{z}|^{2}z = \bar{z}, zˉ2=z2{\bar{z}}^{2} = \overline{z^{2}}

z|z|z+2z=2\left| z + \frac{2}{z} \right| = 2

31\sqrt{3} - 13+1\sqrt{3} + 13\sqrt{3}

Trick : By inspection, 2+3\sqrt{2} + \sqrt{3}