Solveeit Logo

Question

Question: If \(\left| \begin{matrix} y + z & x & y \\ z + x & z & x \\ x + y & y & z \end{matrix} \right|\) = ...

If y+zxyz+xzxx+yyz\left| \begin{matrix} y + z & x & y \\ z + x & z & x \\ x + y & y & z \end{matrix} \right| = k (x + y + z)(x–z)2, then k is equal to –

A

2xyz

B

1

C

xyz

D

x2y2z2

Answer

1

Explanation

Solution

R1 ® R1 + R2 + R3 ;

D = (x + y + z) 211z+xzxx+yyz\left| \begin{matrix} 2 & 1 & 1 \\ z + x & z & x \\ x + y & y & z \end{matrix} \right| = (x + y + z) 111xzxxyz\left| \begin{matrix} 1 & 1 & 1 \\ x & z & x \\ x & y & z \end{matrix} \right|

= (x + y + z) [1(z2–xy)–1(xz – x2) + 1 (xy – xz)]

= (x + y + z) [z2 – xy – xz + x2 + xy – xz]

= (x + y + z) [z2 + x2 – 2xz]

= (x + y + z) (x – z)2

\ k = 1