Question
Question: If \(\left| \begin{matrix} y + z & x & y \\ z + x & z & x \\ x + y & y & z \end{matrix} \right| = k(...
If y+zz+xx+yxzyyxz=k(x+y+z)(x−z)2, then k=
A
2xyz
B
1
C
xyz
D
x2y2z2
Answer
1
Explanation
Solution
y+zz+xx+yxzyyxz= (x+y+z)2z+xx+y1zy1xz
by R1→R1+R2+R3
= (x+y+z)1xx1zy1xz ; by C1→C1−C2
= (x+y+z).{(z2−xy)−(xz−x2)+(xy−xz)}
= (x+y+z)(x−z)2 ⇒ k=1.
Trick : Put x=1,y=2, z=3, then
\mathbf{5} & \mathbf{1} & \mathbf{2} \\ \mathbf{4} & \mathbf{3} & \mathbf{1} \\ \mathbf{3} & \mathbf{2} & \mathbf{3} \end{matrix} \right|\mathbf{= 5(7)}\mathbf{-}\mathbf{1(12}\mathbf{-}\mathbf{3) + 2(8}\mathbf{-}\mathbf{9)}$$ **=** $\mathbf{35 - 9 - 2 = 24}$& $(x + y + z)(x - z)^{2} = (6)( - 2)^{2} = 24$ $\mathbf{\therefore}\mathbf{k =}\frac{\mathbf{24}}{\mathbf{24}}\mathbf{= 1}$.