Solveeit Logo

Question

Question: If \(\left| \begin{matrix} x^{2} + x & x + 1 & x - 2 \\ 2x^{2} + 3x - 1 & 3x & 3x - 3 \\ x^{2} + 2x ...

If x2+xx+1x22x2+3x13x3x3x2+2x+32x12x1=Ax12\left| \begin{matrix} x^{2} + x & x + 1 & x - 2 \\ 2x^{2} + 3x - 1 & 3x & 3x - 3 \\ x^{2} + 2x + 3 & 2x - 1 & 2x - 1 \end{matrix} \right| = Ax - 12, then the value of A is.

A

12

B

24

C

–12

D

– 24

Answer

24

Explanation

Solution

Sol. Trick : Put x=1x = 1, then we have

\mathbf{2} & \mathbf{2} & \mathbf{-}\mathbf{1} \\ \mathbf{4} & \mathbf{3} & \mathbf{0} \\ \mathbf{6} & \mathbf{1} & \mathbf{1} \end{matrix} \right|\mathbf{= A}\mathbf{-}\mathbf{12}\mathbf{\Rightarrow}\left| \begin{matrix} \mathbf{0} & \mathbf{2} & \mathbf{-}\mathbf{1} \\ \mathbf{1} & \mathbf{3} & \mathbf{0} \\ \mathbf{5} & \mathbf{1} & \mathbf{1} \end{matrix} \right|\mathbf{= A}\mathbf{-}\mathbf{12}$$ **{**Apply $C_{1} \rightarrow C_{1} - C_{2}$**}** $\Rightarrow$ $- 2 + ( - 1)( - 14) = A - 12 \Rightarrow A = 24$.