Solveeit Logo

Question

Question: If \(\left| \begin{matrix} x + \alpha & \beta & \gamma \\ \alpha & x + \beta & \gamma \\ \alpha & \b...

If x+αβγαx+βγαβx+γ\left| \begin{matrix} x + \alpha & \beta & \gamma \\ \alpha & x + \beta & \gamma \\ \alpha & \beta & x + \gamma \end{matrix} \right| = 0, then x is equal to

A

0, a2 + b2+ g2

B

1, a + b+ g

C

0, – (a + b+ g)

D

0, (a + b+ g)

Answer

0, – (a + b+ g)

Explanation

Solution

By putting x = 0

all the three columns are identical so x2 is a factor

C1 ® C1 + C2 + C3 then (x + a + b + g) is also a factor