Question
Question: If \(\left| \begin{matrix} x + \alpha & \beta & \gamma \\ \alpha & x + \beta & \gamma \\ \alpha & \b...
If x+αααβx+ββγγx+γ = 0, then x is equal to
A
0, α2 + β2 + γ2
B
1, α + β + γ
C
0, – (α + β +γ )
D
0, (α + β + γ)
Answer
0, – (α + β +γ )
Explanation
Solution
If we put x = 0 then Three rows are same so
(x – 0)2 is factor of ∆
Now, C1 → C1 + C2 + C3 &
Take common (x + α + β + γ)
So ∆ = x2 (x + α +β + γ) ⇒ x = 0, –α – β – γ