Solveeit Logo

Question

Question: If \(\left| \begin{matrix} x + \alpha & \beta & \gamma \\ \alpha & x + \beta & \gamma \\ \alpha & \b...

If x+αβγαx+βγαβx+γ\left| \begin{matrix} x + \alpha & \beta & \gamma \\ \alpha & x + \beta & \gamma \\ \alpha & \beta & x + \gamma \end{matrix} \right| = 0, then x is equal to

A

0, α2 + β2 + γ2

B

1, α + β + γ

C

0, – (α + β +γ )

D

0, (α + β + γ)

Answer

0, – (α + β +γ )

Explanation

Solution

If we put x = 0 then Three rows are same so

(x – 0)2 is factor of ∆

Now, C1 → C1 + C2 + C3 &

Take common (x + α + β + γ)

So ∆ = x2 (x + α +β + γ) ⇒ x = 0, –α – β – γ