Solveeit Logo

Question

Question: If \(\left| \begin{matrix} x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4 \end{matrix} \right| = 0\...

If x+1352x+2523x+4=0\left| \begin{matrix} x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4 \end{matrix} \right| = 0, then x =

A

1, 9

B

– 1, 9

C

– 1, – 9

D

1, – 9

Answer

1, – 9

Explanation

Solution

By C1C1+C2+C3C_{1} \rightarrow C_{1} + C_{2} + C_{3},

we have (9+x)(9 + x) 1351x+2513x+4\left| \begin{matrix} 1 & 3 & 5 \\ 1 & x + 2 & 5 \\ 1 & 3 & x + 4 \end{matrix} \right| = 0

(x+9)\Rightarrow (x + 9) 01x00(1x)1x13x+4=0\left| \begin{matrix} 0 & 1 - x & 0 \\ 0 & - (1 - x) & 1 - x \\ 1 & 3 & x + 4 \end{matrix} \right| = 0

(x+9)\Rightarrow (x + 9) (1x)201001113x+4=0(1 - x)^{2}\left| \begin{matrix} 0 & 1 & 0 \\ 0 & - 1 & 1 \\ 1 & 3 & x + 4 \end{matrix} \right| = 0

x=1,1,9\Rightarrow x = 1,1, - 9, (Since the determinant = 1).