Question
Question: If ∆ =\(\left| \begin{matrix} \sin x.\cos y & \sin x.\sin y & \cos x \\ \cos x.\cos y & \cos x.\sin ...
If ∆ =$\left| \begin{matrix} \sin x.\cos y & \sin x.\sin y & \cos x \ \cos x.\cos y & \cos x.\sin y & - \sin x \
- \sin x.\sin y & \sin x.\cos y & 0 \end{matrix} \right|$, then ∆ is
independent of –
A
x
B
y
C
Constant
D
None of these
Answer
y
Explanation
Solution
Take sin x, cos x and sin x common from R1, R2 and R3 respectively
∴ ∆ = sin2 x . cos x $\left| \begin{matrix} \cos y & \sin y & \cot x \ \cos y & \sin y & - \tan x \
- \sin y & \cos y & 0 \end{matrix} \right|$
Make two zeros by R1 – R2 = sin2 x cos x
$\left| \begin{matrix} 0 & 0 & \cot x + \tan x \ \cos y & \sin y & - \tan x \
- \sin y & \cos y & 0 \end{matrix} \right|$= sin2 x . cos x .
sinx.cosxsin2x+cos2x [cos2 y + sin2 y]
= sin x, which is independent of y.