Solveeit Logo

Question

Question: If ∆ =\(\left| \begin{matrix} \sin x.\cos y & \sin x.\sin y & \cos x \\ \cos x.\cos y & \cos x.\sin ...

If ∆ =$\left| \begin{matrix} \sin x.\cos y & \sin x.\sin y & \cos x \ \cos x.\cos y & \cos x.\sin y & - \sin x \

  • \sin x.\sin y & \sin x.\cos y & 0 \end{matrix} \right|$, then ∆ is

independent of –

A

x

B

y

C

Constant

D

None of these

Answer

y

Explanation

Solution

Take sin x, cos x and sin x common from R1, R2 and R3 respectively

∴ ∆ = sin2 x . cos x $\left| \begin{matrix} \cos y & \sin y & \cot x \ \cos y & \sin y & - \tan x \

  • \sin y & \cos y & 0 \end{matrix} \right|$

Make two zeros by R1 – R2 = sin2 x cos x

$\left| \begin{matrix} 0 & 0 & \cot x + \tan x \ \cos y & \sin y & - \tan x \

  • \sin y & \cos y & 0 \end{matrix} \right|$= sin2 x . cos x .

sin2x+cos2xsinx.cosx\frac{\sin^{2}x + \cos^{2}x}{\sin x.\cos x} [cos2 y + sin2 y]

= sin x, which is independent of y.