Question
Question: If \(\left| \begin{matrix} \cos(A + B) & - \sin(A + B) & \cos 2B \\ \sin A & \cos A & \sin B \\ - \...
If $\left| \begin{matrix} \cos(A + B) & - \sin(A + B) & \cos 2B \ \sin A & \cos A & \sin B \
- \cos A & \sin A & \cos B \end{matrix} \right| = 0,thenB =$
A
(2n+1)2π
B
nπ
C
(2n+1)π
D
2nπ
Answer
(2n+1)2π
Explanation
Solution
On expanding the determinant
cos2(A+B)+sin2(A+B)+cos2B=01+cos2B=0 or
cos2B=cosπ or 2B=2nπ+π or B=(2n+1)2π.