Solveeit Logo

Question

Question: If \(\left| \begin{matrix} \cos(A + B) & - \sin(A + B) & \cos 2B \\ \sin A & \cos A & \sin B \\ - \...

If $\left| \begin{matrix} \cos(A + B) & - \sin(A + B) & \cos 2B \ \sin A & \cos A & \sin B \

  • \cos A & \sin A & \cos B \end{matrix} \right| = 0,thenthenB =$
A

(2n+1)π2(2n + 1)\frac{\pi}{2}

B

nπn\pi

C

(2n+1)π(2n + 1)\pi

D

2nπ2n\pi

Answer

(2n+1)π2(2n + 1)\frac{\pi}{2}

Explanation

Solution

On expanding the determinant

cos2(A+B)+sin2(A+B)+cos2B=01+cos2B=0\mathbf{\cos}^{\mathbf{2}}\mathbf{(}\mathbf{A + B) +}\mathbf{\sin}^{\mathbf{2}}\mathbf{(}\mathbf{A + B) +}\mathbf{\cos}\mathbf{2}\mathbf{B = 0}\mathbf{1 +}\mathbf{\cos}\mathbf{2}\mathbf{B = 0} or

cos2B=cosπ\cos 2B = \cos\pi or 2B=2nπ+π2B = 2n\pi + \pi or B=(2n+1)π2.B = (2n + 1)\frac{\pi}{2}.