Question
Question: If \(\left| \begin{matrix} \alpha & x & x & x \\ x & \beta & x & x \\ x & x & \gamma & x \\ x & x & ...
If αxxxxβxxxxγxxxxδ = f(x) – x f '(x), then f(x) is –
(x – a) (x – b) (x – g) (x – d)
(x + a) (x + b) (x + g) (x + d)
2(x – a) (x – b) (x – g) (x – d)
None of these
(x – a) (x – b) (x – g) (x – d)
Solution
C2 – C1, C3 – C1, C4 – C1 reduces the given det. In
D=αxxxx−α−(x−β)00x−α0−(x−γ)0x−α00−(x−δ)=a $\left| \begin{matrix}
- (x - \beta) & 0 & 0 \ 0 & - (x - \gamma) & 0 \ 0 & 0 & - (x - \delta) \end{matrix} \right|$ –x
x−α00x−α−(x−γ)0x−α0−(x−δ)
+x $\left| \begin{matrix} x - \alpha & x - \alpha & x - \alpha \
- (x - \beta) & 0 & 0 \ 0 & 0 & - (x - \delta) \end{matrix} \right|$
– x $\left| \begin{matrix} x - \alpha & x - \alpha & x - \alpha \
- (x - \beta) & 0 & 0 \ 0 & ( - x - \gamma) & 0 \end{matrix} \right|$
= – a(x – b) (x – g) (x – d) – x (x – a) (x – g)
(x – d) – x (x – a) (x – b) (x – d) – (x – a)
(x – b) (x – g)
= a(x – b) (x – g) (x – d) + x(x – b) (x – g) (x – d) – x(x – b) (x – g) (x – d) – x(x – a) (x – g) (x – d) – x(x – a) (x – b)
(x – d) – x (x – a) (x – b) (x – g) = (x – b) (x – g) (x – d)
(x – a) – x[(x – a) (x – b) (x – g) + (x – b) (x – g) (x – d)
+ (x – g) (x – d) (x – a) + (x – a) (x – b) (x – d)]
= f(x) – x f '(x)
where f(x) = (x – a) (x – b) (x – g) (x – d)