Solveeit Logo

Question

Question: If \(\left| \begin{matrix} \alpha & - \beta & 0 \\ 0 & \alpha & \beta \\ \beta & 0 & \alpha \end{mat...

If αβ00αββ0α\left| \begin{matrix} \alpha & - \beta & 0 \\ 0 & \alpha & \beta \\ \beta & 0 & \alpha \end{matrix} \right| = 0, then

A

α/β is one of the cube roots of unity

B

α is one of the cube roots of unity

C

β is one of the cube roots of unity

D

None of these

Answer

α/β is one of the cube roots of unity

Explanation

Solution

α3 – β3 = 0

(αβ)3\left( \frac{\alpha}{\beta} \right)^{3}= 1 ⇒ αβ\frac{\alpha}{\beta} = (1)1/3