Solveeit Logo

Question

Question: If \(\left| \begin{matrix} a & b & a\alpha - b \\ b & c & b\alpha - c \\ 2 & 1 & 0 \end{matrix} \rig...

If abaαbbcbαc210=0\left| \begin{matrix} a & b & a\alpha - b \\ b & c & b\alpha - c \\ 2 & 1 & 0 \end{matrix} \right| = 0and α12,\alpha \neq \frac{1}{2}, then.

A

a,b,ca,b,c are in A. P.

B

a,b,ca,b,care in G. P.

C

a,b,ca,b,care in H. P.

D

None of these

Answer

a,b,ca,b,care in G. P.

Explanation

Solution

abaαbbcbαc210=0\left| \begin{matrix} \mathbf{a} & \mathbf{b} & \mathbf{a\alpha}\mathbf{-}\mathbf{b} \\ \mathbf{b} & \mathbf{c} & \mathbf{b\alpha}\mathbf{-}\mathbf{c} \\ \mathbf{2} & \mathbf{1} & \mathbf{0} \end{matrix} \right|\mathbf{= 0}

a[(bαc)]b[2(bαc)]+[aαb)(b2c)]=0a\lbrack - (b\alpha - c)\rbrack - b\lbrack - 2(b\alpha - c)\rbrack + \lbrack a\alpha - b)(b - 2c)\rbrack = 0

abα+ac+2b2α2bc+abα2acαb2+2bc=0- ab\alpha + ac + 2b^{2}\alpha - 2bc + ab\alpha - 2ac\alpha - b^{2} + 2bc = 0

ac+2b2α2acαb2=0ac + 2b^{2}\alpha - 2ac\alpha - b^{2} = 0

(acb2)2α(acb2)=0(ac - b^{2}) - 2\alpha(ac - b^{2}) = 0

acb2=0ac - b^{2} = 0or 12α=01 - 2\alpha = 0 \Rightarrow b2=acb^{2} = acor α=12\alpha = \frac{1}{2}

α12\because\alpha \neq \frac{1}{2} (As given in question)

So, b2=acb^{2} = ac i.e, a,b,ca,b,care in G.P.