Solveeit Logo

Question

Question: If \(\left| \begin{matrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{matrix} \right|\) = 0. Then...

If ab00abb0a\left| \begin{matrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{matrix} \right| = 0. Then

A

A is one of the cube roots of unity

B

B is a one of the cube roots of unity

C

(ab)\left( \frac{a}{b} \right)is one of the cube roots of unity

D

(ab)\left( \frac{a}{b} \right)is one the cube roots of – 1

Answer

(ab)\left( \frac{a}{b} \right)is one the cube roots of – 1

Explanation

Solution

∆ = a3 + b3 = 0 ⇒ a3 = – b3 ⇒ (a/b)3 = –1