Question
Question: If \(\left| \begin{matrix} 6i & - 3i & 1 \\ 4 & 3i & - 1 \\ 20 & 3 & i \end{matrix} \right|\) = x + ...
If 6i420−3i3i31−1i = x + iy, then
A
x = 3, y = 1
B
x = 1, y = 3
C
x = 0, y = 0
D
x = 0, y = 3
Answer
x = 0, y = 0
Explanation
Solution
R1 ® R1 + R2
6i+442003i30−1i = x + iy Ž (6i + 4) (–3 + 3) = x + iy
0 = x + iy Ž 0 + 0i = x + iy Ž x = 0, y = 0