Solveeit Logo

Question

Question: If \(\left| \begin{matrix} 4 & 1 \\ 2 & 1 \end{matrix} \right|^{2} = \left| \begin{matrix} 3 & 2 \\ ...

If $\left| \begin{matrix} 4 & 1 \ 2 & 1 \end{matrix} \right|^{2} = \left| \begin{matrix} 3 & 2 \ 1 & x \end{matrix} \right| - \left| \begin{matrix} x & 3 \

  • 2 & 1 \end{matrix} \right|$, then x =
A

– 14

B

2

C

6

D

7

Answer

6

Explanation

Solution

$\left| \begin{matrix} 4 & 1 \ 2 & 1 \end{matrix} \right|\left| \begin{matrix} 4 & 1 \ 2 & 1 \end{matrix} \right| = \left| \begin{matrix} 3 & 2 \ 1 & x \end{matrix} \right| - \left| \begin{matrix} x & 3 \

  • 2 & 1 \end{matrix} \right|$
17 & 9 \\ 9 & 5 \end{matrix} \right| = (3x - 2) - (x + 6)$$ ⇒ $85 - 81 = 2x - 8$ ⇒ $4 + 8 = 2x$⇒ $x = 6$.