Question
Question: If \(\left| \begin{matrix} 4 & 1 \\ 2 & 1 \end{matrix} \right|^{2} = \left| \begin{matrix} 3 & 2 \\ ...
If $\left| \begin{matrix} 4 & 1 \ 2 & 1 \end{matrix} \right|^{2} = \left| \begin{matrix} 3 & 2 \ 1 & x \end{matrix} \right| - \left| \begin{matrix} x & 3 \
- 2 & 1 \end{matrix} \right|$, then x =
A
– 14
B
2
C
6
D
7
Answer
6
Explanation
Solution
$\left| \begin{matrix} 4 & 1 \ 2 & 1 \end{matrix} \right|\left| \begin{matrix} 4 & 1 \ 2 & 1 \end{matrix} \right| = \left| \begin{matrix} 3 & 2 \ 1 & x \end{matrix} \right| - \left| \begin{matrix} x & 3 \
- 2 & 1 \end{matrix} \right|$