Solveeit Logo

Question

Question: If \(\left| \begin{matrix} 3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8 \end{matrix} \right| =...

If 3x83333x83333x8=0,\left| \begin{matrix} 3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8 \end{matrix} \right| = 0, then the values of x are.

A

0, 2/3

B

2/3, 11/3

C

1/2, 1

D

11/3, 1

Answer

2/3, 11/3

Explanation

Solution

3x83333x83333x8=0\left| \begin{matrix} 3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8 \end{matrix} \right| = 0

C1C1+C2+C3C_{1} \rightarrow C_{1} + C_{2} + C_{3}, we get

(3x2)13313x83133x8=0(3x - 2)\left| \begin{matrix} 1 & 3 & 3 \\ 1 & 3x - 8 & 3 \\ 1 & 3 & 3x - 8 \end{matrix} \right| = 0

R1R1R2R_{1} \rightarrow R_{1} - R_{2}and R2R2R3R_{2} \rightarrow R_{2} - R_{3}, we get

(3x2)03x+11003x113x+11133x8=0(3x - 2)\left| \begin{matrix} 0 & - 3x + 11 & 0 \\ 0 & 3x - 11 & - 3x + 11 \\ 1 & 3 & 3x - 8 \end{matrix} \right| = 0

(3x2)[(3x+11)2]=0(3x - 2)\left\lbrack ( - 3x + 11)^{2} \right\rbrack = 0

x=23x = \frac{2}{3}or x=113x=23,113x = \frac{11}{3} \Rightarrow x = \frac{2}{3},\frac{11}{3}.